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Abstract

We demonstrate that conditions in a student’s local hometown labor market influence their course taking choices while
in high school, and also their initial and final majors when they go to attend college. As a possible mechanism to explain
this, we demonstrate that growth in local relevant employment for STEM workers increases a measure of relevant wages
for those workers. Next, motivated by evidence that past conditions in a student’s labor market may continue to affect a
students present decisions, we estimate a dynamic discrete choice model in which students can respond to labor market
conditions in each period, and the decisions made in one period have implications for the next. Using this model, we
find that allowing students the option to pursue STEM-intensive course loads while in high school contributes to their
likelihood of pursuing a STEM degree in college and increases their earnings once in the labor market. Additionally,
having this course option while in high school increases the responsiveness of students’ college major choices and wages
to changes in the local labor market.

*The authors appreciate valuable feedback on this paper from Ken Hendricks, Chris Taber, Jesse Gregory, and Chao Fu. The University of
Wisconsin-Madison provided funding to support this project. The conclusions of this research do not necessarily reflect the opinions or official position
of the Texas Education Agency, the Texas Higher Education Coordinating Board, the Texas Workforce Commission or the State of Texas.

1

https://ryanmather.github.io/assets/docs/jmp_ryan_mather.pdf


1 Introduction

Students face difficult decisions in choosing what academic courses and majors will best prepare them for the labor market.
Their choices involve trade-offs between choosing fields that fit their interests or abilities and the knowledge that academic
paths have large implications for wages: The gap in expected earnings between different majors can be similar in size to the
gap between college graduates and high school graduates (Altonji et al., 2012). What is more, the demand for certain skills
in the labor market changes over time as different industries or production methods rise or fall in prominence. For bachelor’s
degrees that may require four to six years to complete, students make initial major choices based on their predictions for
how valuable each major will be at the time when they graduate. Their decisions must begin even earlier than that, though,
in selecting the high school courses that they will take to prepare them for life after high school.

This challenge for students creates similar challenges for policymakers. In Texas, the current 60X30TX education plan
sees postsecondary education as crucial in shaping the future labor force of Texas, and sets the goal that at least 60 percent
of Texans aged 25-34 will have a certificate or degree by 2030. This plan was motivated in part by growth among minority
groups like Hispanics, who made up 65 percent of state population growth in the prior census and were traditionally un-
derrepresented in Texas higher education. Poverty among Hispanics had been increasing, particularly for those with lower
educational attainment. As acknowledged in the plan, however, a "degree isn’t enough... Texas students will need to match
their credentials to employer needs. The role of higher education in helping students and employers coordinate their efforts
is essential" (THECB, 2015). Creating educational systems that facilitate this match is difficult, because it is not clear how
responsive students’ academic choices are to changes in the local labor market, and how long those responses will take to
occur.

In this paper, we use data from Texas to shed light on these questions. Our main goal is to assess how movements in local
industry conditions influence the choices that students make between academic subjects. In doing so, we pay special attention
to the fact that students do not make these decisions all at once, but work toward their final college outcome gradually over
time. A main takeaway from our paper is that local labor conditions are already having significant implications for this
process while a student is still in high school. The dynamics of these student decisions over time have important implications
for the overall responsiveness of students to the local labor market. For example, where college seniors likely have an
accurate view of what economic conditions will be like when they graduate, they have little ability to switch majors without
delaying their graduation date. High school seniors, by contrast, have a greater freedom to choose between majors, but must
make their decisions based on economic conditions that are further removed from the job markets that they will actually
enter upon graduation from college.

We find evidence that high school graduates react strongly to their local labor markets when choosing their senior-
year coursework. Importantly, however, the responsiveness of students to the labor market changes as we take the lagged
difference over different lengths of time, suggesting that students’ course taking choices may be influenced by past conditions
in their local labor market. We interpret this as evidence that students may begin reacting to the labor market by preparing
for or selecting certain senior-year courses even before entering their senior year. Our regressions also provide evidence that
local labor market conditions affect the rates at which STEM course-takers earn credit for those courses.

Next, we estimate regressions looking at how students’ initial and final selections between college majors, and find that
STEM majors continue to be responsive to local conditions. As a likely mechanism for these effects, we test whether the
wages that are relevant for a specific major increase when the relevant employment share for that major increases. We
find this to be true within STEM majors, which helps to explain why STEM majors were responsive to local labor market
conditions at the stage of choosing a first major in college.

Given that local labor markets can have effects on student decisions at many stages in their academic process, fully
understanding these effects of the local labor market demands a richer model which can take into account student decisions
over time. To address this, we estimate a dynamic discrete choice model in which students begin making decisions in high
school, and are free to respond each period to changes in the local STEM employment share.

This model allows us to more fully estimate in the importance of local labor market conditions while students are in
high school, both for the decisions that they make in high school and the long-term implications of those decisions as they
go on to college and the labor force. The paper ends with a counterfactual estimation in which we turn off student’s ability
to choose their high school senior-year coursework, and observe the implications for student responses to the labor market.
We find that removing this option lowers the number of students who graduate college with STEM degrees by about 4.42
percent, and decreases a measure of early career earnings by about 1.63 percent. Among students who would have otherwise
pursued the STEM-Intensive senior-year track, these earnings results are even more dramatic, with early career earnings
dropping by around 4.96 percent. What is more, the growth of student STEM degree shares and eventual wages after a
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STEM employment share shock is diminished in the counterfactual, suggesting that the ability to choose senior year course
loads has important effects on the overall responsiveness of students to the labor market.

Importantly, we also find that substantial benefits of a STEM-Intensive course load option in the senior year are present
for students with the highest and lowest levels of initial STEM ability. From a policy perspective, this is encouraging evidence
that providing meaningful options between career-relevant high school courses benefits the long-term earnings of students
from diverse backgrounds.

1.1 Related Literature

This paper examines effect of a student’s high school labor market on their choices between courses and eventual college
majors. There are three strands of literature that seem most related to this topic. First, there are papers which estimate
the effects of career-relevant high school courses on long-term outcomes (see Altonji et al. (2012) for a review). Our main
contribution to this literature is to assess the impact of a student’s local labor market on their high school curriculum choices.
To our knowledge, we are the first to identify causal effects in this area.1 Many of the existing papers in this literature leverage
variation across high school environments to instrument for an individual student’s choices between courses. For example,
the number of classes taken on average in certain subjects, the dedication of full-time teachers to teach certain subjects, and
school-specific graduation requirements have all been used in this way (e.g. Altonji 1995, Rose and Betts 2004, Meer 2007,
and Kreisman and Stange 2017). Rather than taking aggregate conditions of the high school environment as given in this
way, we are interested in asking how aggregate conditions at a high school change in response to local industry conditions.
Specifically, we will estimate how the share of classes that are offered, taken, and passed in STEM and non-STEM change
in response to local industry conditions.

Second, there is a large literature dedicated to understanding how students’ decisions between college majors depend on
conditions in the labor market. Our paper is most related to the work that looks at how student major choices respond to
their local labor markets as opposed to the national labor market (e.g. Conzelmann et al. 2023, Weinstein 2022, Grosz 2022,
Han and Winters 2020, Long et al. 2015). To our knowledge, this is the first paper to use a student’s high school location
to measure their local labor market, which we define as the commuting zone, when estimating the effects on the specific
major that students pursue.2 We argue that this offers a better measure of a student’s home labor market than those used
previously,3 and that it is the most relevant local labor market for influencing a student’s initial major choices.

Another contribution that we make in this literature is the use of a shift-share instrument to identify plausibly exogenous
variation in local economic conditions. In doing so, we allow the “relevance” of an industry for a major to change over time,
and measure it with information from recent graduates to address how the degree to which different industries are relevant
may change as workers gain experience in the labor force.4 Conzelmann et al. (2023) is one other paper that also uses a
shift-share instrument.5 The main difference between our work and theirs is that Conzelmann et al. (2023) focuses entirely
on the number of people that graduate with a specific major, whereas we are more focused on the process by which a student
reaches that final major. As such, our main results are about the courses that a student selects in high school and their first
major when going to college.

A final contribution that we make to this literature is better describing the timing of student decisions related to major
choice. Much of the evidence on student’s reactions to changes in labor markets tends to focus on the degrees that students

1The most related paper that we have found here is Kreisman and Stange (2017), which controls for the local labor market with cohort-by-state fixed
effects. However, they do not report these fixed effects or identify the portion of them that is coming from the local labor market as opposed to other
things that vary at the state-by-time level. Moreover, our entire analysis is within a state, and the effects are identified using variation across commuting
zones. We believe that these zones are a better proxy for a student’s local labor market.

2Hubbard (2018) uses an even more specific measure which is the zip code of a student’s home address, or, when that is not available, the location
of a student’s high school. However, his goal is to estimate how local labor conditions influence a student’s decisions between degree levels (that is,
high school diploma, associate’s degree, or bachelor’s degree) rather than the degree subject as measured by the major.

3The papers on the influence of local labor markets cited above use generally use the college a student goes to to construct measures of local labor
market conditions. For example, Weinstein (2022) uses the area around a student’s college, and Conzelmann et al. (2023) uses the locations where
alumni of a certain college tend to live. An exception is Han and Winters (2020), which uses a student’s state of birth. By using commuting zones, we
identify a student’s home location and labor market much more specifically.

4Other papers in this area tend to use measures of “relevance” that are constant over time and the number of years a worker has spent in the labor
force. Conzelmann et al. (2023) uses a measure which can vary over time, but is constant over the number of years a worker has spent in the labor
force. The differences between our method and that of other papers is discussed in more detail in Appendix A.4.

5Grosz (2022) uses a shift-share instrument as well, but his focus is on the supply-side responses of community colleges to state-level shocks. Also,
his data is not able to match changes in industry employment shares to changes in academic majors over the same time intervals. As a result, he
acknowledges that the magnitude of his coefficient estimates may be inaccurate.
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have when graduating, which is the final result of this decision process.6 Knowing the timing of student decisions will help
us to understand the amount of time it takes changes in the labor market to be fully reflected in the shares of students picking
certain majors. Some of the previous evidence on the degrees that students graduate with suggest that the timing of student
decisions affect this lag. For example, Long et al. (2015) find that student’s degree choice upon graduating is most strongly
related to industry-specific wages three years earlier, which is when many of the students would have been freshman in
college choosing their initial majors. To fully capture the timing of student decisions, we employ a structural model in which
students are able to react to industry conditions each period, and their decisions in one period have implications for their
decisions in future periods.

This brings us to the final literature we contribute to, which covers dynamic discrete choice models connecting students’
degree choices and labor market conditions. Buchinsky and Leslie (2010) estimates a model in which students make a
decision whether to attend college or not in response to their predictions about the labor market. However, college degrees
within their model do not involve a specific “major” subject. Students do choose between science and non-science degrees in
Arcidiacono et al. (2023), but the aggregate labor shocks in that model are not industry-specific, and have the same effects on
the log wages of all workers regardless of their degree path. In our model, the focus is on the way that students progressively
learn about and react to the broader conditions in industries that place more or less value on STEM and Non-STEM abilities.
Our central goal is to describe how students make decisions between STEM and non-STEM academic options in response
to changes in the relative attractiveness of those options in the labor market.

Ryoo and Rosen (2004) use a model with a similar idea, in which students can react to changes in the labor market for
engineers by enrolling in engineering programs. Heckman et al. (1998) also estimates a dynamic discrete choice model in
which students’ educational choices react to labor market conditions, and is more similar to ours in that modeled students
can choose science and non-science degrees in college.7 The main contribution of our proposed work relative to these papers
will be a greater focus on the high school and college processes. For example, neither of these papers have models that let
students decide to change their majors while in college.8

The rest of the paper proceeds as follows: In the next section, we describe the data sets that we will use for this project and
some motivating evidence on the possible connection between movements in the labor market and college majors. Section 3
describes our method for estimating the causal relationship between these two things, and section 4 shows our results from
using that method. Section 5 describes our structural model model, section 6 describes how that model is identified, and
section 7 shares the estimation results. Finally, section 8 concludes.

2 Background and Data

Our main goal in this paper is to assess how students’ choices between academic subjects are influenced by the employment
conditions in industries related to those subjects. Figure 1 displays the kind of relationship that we are interested in studying.
In it, we look at the Dallas commuting zone,9 and plot the changes in Health Care/Social Assistance10 employment shares
along with the share of people whose first declared major in college is in STEM.11 The fact that the the two lines in these
graphs are so similar gives suggestive evidence that students may be responding to the labor market when they are choosing

6Bradley (2012) is one exception, and considers the effects of recessions on the intended majors of freshman students before enrolling in classes.
However, the data used there does not include the degrees students have when they graduate. Our results will show the effects of movements in specific
industries on student’s course taking in high school, first declared majors, and the final majors that students have upon graduation.

7Ryoo and Rosen (2004) also let the supply of new engineering school entrants depend on shocks to career prospects in alternative professions, but
the decision paths of students who go that route are not modeled.

8This is a particularly limiting restriction for STEM, as we know that a large number of students initially intending to major in STEM drop out.
Stinebrickner and Stinebrickner (2014) finds in their data that 19.8% of students enter college believing that a degree in science or math will be their
most likely outcome, and yet only 7.4% of students actually graduate with one. There is a constant dropout rate in the model of Ryoo and Rosen (2004),
but since it is constant it cannot respond to local labor market conditions.

9Specifically, we use commuting zone 33100 as the representative commuting zone for Dallas.
10Health Care/Social Assistance and Retail Trade were the two-digit NAICS codes with the highest employment shares in Texas as of 2005. To

provide an initial look at the data, in these graphs we associate Health Care/Social Assistance with STEM and “Retail Trade” with Non-STEM. When
we separate two-digit NAICS codes into STEM and Non-STEM intensive categories for the model “Health Care/Social Assistance” will actually fit
into the Non-STEM intensive category. This is discussed in appendix section C.3. Complimentary graphs for Retail Trade and Non-STEM degrees can
be found in appendix A.1.

11Specifically, the students included in these graph are those who attended a public high school within the commuting zone and then attended either a
public university or community college within the state of Texas. We record their first major at those colleges, even if the college they attend is outside
of the Dallas commuting zone. The suggestive evidence coming from this graph is more about the effects of a student’s high school or “home” labor
market on their decision, as opposed to the effects of the labor market of their college.
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their first major. For example, if it is true Health Care hires a lot of people with STEM majors, then a student might respond
to the growth in that industry by majoring in STEM.

Figure 1: Health Care/Social Assistance Employment and College Major Shares in Dallas

Figure 2 show this same graph for commuting zones associated with other large cities in Texas.12 Again, the same
patterns often show up. In appendix section A.1, we display similar graphs for Non-STEM degrees and the “Retail Trade”
industry. This paper will try to assess whether there is any causal connection underlying this sort of relationship. Specifically,
we study how the conditions of industries in labor markets that a student is exposed to at different times in their education
can affect their choices between majors.

Figure 2: Health Care/Social Assistance Employment and STEM Major Shares Across Texas

Texas is an ideal state in which to consider these questions. First, as mentioned in the introduction, Texas is in the

12In that figure, we use commuting zone 32000 as the representative commuting zone for Houston.
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midst a policy agenda to increase the share of Texans aged 25-34 with a certificate or degree to 60 percent by 2030.13

This plan was motivated by future employer needs and the growth of minority populations like Hispanics—the Hispanic
population aged 25 to 24 is projected to increase by 41 percent between 2015 and 2030. According to the 60x30TX strategic
plan, African Americans and Hispanics together accounted for over 60 percent of the K-12 pipeline,14 and traditionally are
underrepresented in Texas higher education (THECB, 2015). Texas may be well-positioned to increase economic equity
through higher education. In Chetty et al. (2020), the authors found that Texas had three of the nation’s top ten colleges for
bottom-to-top quintile income mobility rates.15 measured by moving from the bottom 20 percent to the top 20 percent of
the income distribution. Achieving positive and equitable outcomes for students in the midst of such a large increase in the
college-educated workforce, however, will demand educational systems that can help match student training with employers
who need their skills and are hiring. We view this paper as making important contributions in that context.

Finally, among state administrative datasets to access, it is helpful that Texas is a large state both in terms of covering
many commuting zones and educating many students. The many commuting zones are helpful so that we can observe
meaningful variation in local labor market conditions, and having data on many students provides us with large sample
sizes. In fact, Texas educates over 10 percent of all public-school students in the United States (NCES, 2023).16 The total
population in Texas is greater than that of the entire Nordic region combined, meaning that the scope of our data is similar
to nationwide data from a reasonably sized country.17

The main data that we will use for this paper comes from the Texas Schools Project (TSP). This data set links educational
data from grades K-12 and colleges to labor force outcomes in Texas. It has a few features are particularly well-suited for our
research question. First, we can see the high schools that students attended, and can find the location of these high schools.
This gives us reliable information of a student’s location before entering college, and serves as a good proxy of a student’s
home location. Second, we are able to see the declared majors of college students over time while they are in public Texas
colleges. We use this to to identify changes to a student’s major around shifts in industry conditions. Third, we are able to
see the wages, employment status, and industry classification of Texas workers each quarter. This can help us to understand
the link between college majors and industries.

Our sample is comprised of students that graduated from public high schools in Texas from 2000 through 2019. We
restrict the sample to only include students that graduated high school within 4 years of starting it, and that were only
observed in one commuting zone over the course of high school.18 Table 17 in appendix section A.2 displays some summary
statistics for these students. For our analysis, “no college” means that the student did not enroll in any public university or
community college in Texas, and “Enrolled in college” means that they did enroll in one of those options.19

For the share of employment in each industry, we use annual Census County Business Patterns (CBP) data. We use
the 2022 Department of Homeland Security (DHS) STEM Designated Degree Program List to classify degrees as STEM or

13A progress report published in 2022 suggests that Texas has made progress toward meeting that goal. In 2013 the share of Texans aged 25-34 with
a certificate or degree was 38.3 percent (THECB, 2015), and by 2021 that share had grown to 48.6 percent (THECB, 2022).

14Within our sample, which is limited to high school graduates and covers many years of data, these two groups account for 54.4 percent of the
sample. Table 17 in appendix section A.2 displays some summary statistics for the students in our sample.

15This rate measures the share of students at a school where (i) the student came from a family in the bottom quintile of the income distribution
and (ii) the student went on to themselves enter the highest quintile of the income distribution. Their analysis excludes colleges with fewer than 300
students, which excluded about 5 percent of the students in their original sample. The three Texas universities in the top ten were the “University of
Texas, Pan American,” “South Texas College”, and the “University of Texas, El Paso” (Chetty et al., 2020). The “University of Texas, Pan American”
has been merged with the University of Texas at Brownsville and is now called “the University of Texas Rio Grande Valley.”

16In this respect, Texas is nearly identical to California, which is the state that educates the most public school students. Texas educates 11.2% of
all public school students, and California educates 11.7%. These statistics are taken from Fall 2023 and cover enrollment in public elementary and
secondary schools (NCES, 2023).

17Specifically, the Nordic Statistics database records a population of 28.0 million in 2023 across Denmark, Greenland, Finland, Åland, Iceland,
Norway, Sweden, and the Faroe Islands. The Census estimates the 2023 population in Texas at 30.5 million.

18We will consider a student’s local labor market to be the commuting zone associated with their school district. This second condition of requiring
that we only see a student in a single commuting zone simplifies things because students that attended high schools from multiple commuting zones
may have been influenced each of their local labor markets. With this restriction, we will only consider the effects of a single labor market on each
student. Restricting to students that stayed in the same commuting zone also helps to lower the risk of considering students that were influenced to
attend a school in a certain commuting zone because of recent changes in the labor market. For example, if a student’s parent is an engineer, and they
move school districts during high school because the engineering labor market in another location greatly improved that year, then this could potentially
bias our results. In order to determine the school commuting zones a student was in for this restriction, we use graduation data from a student’s first
observed high school graduation and high school enrollment data taken at or before the school year of that graduation.

19The TSP data does provide information on student majors at independent colleges for certain years, and also is linked to National Student Clear-
inghouse data for certain years, which makes it possible to track the colleges that these students attend even if they leave the state of Texas. In the time
periods where these data sets are available, they can help us to better observe whether a student went to any college. We could do this in the future to
check the robustness of our results.
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non-STEM.20 Appendix A includes additional details on other data sources and on how the data were prepared.

3 Estimation Strategy

Our goal is to determine how students’ choices between different academic subjects is affected by changes in industries that
are relevant for those subjects. Understanding which industries are relevant, and how relevant they are, is difficult for two
reasons. First, bachelor’s degrees are often generally applicable to many different jobs. In the case of community college
degrees studied by Grosz (2022), the connection between a particular degree and job in the labor market is likely to be much
more stable. Something like a bachelor’s degree in English, by contrast, could be applied to work in many different contexts.
This makes it more difficult to pin down exactly what industries are relevant for a particular major. Second, the relevance of
a subject to certain industries could change over time and over the life cycle of workers. This is a particularly relevant for
technology-intensive subjects, where the skills needed to complete a job may change rapidly over time. Deming and Noray
(2020) show that workers tend to shift away from occupations like this as they gain experience in the labor market.

3.1 Measuring Relevant Employment by Major

In view of these challenges for measuring the share of local employment that is relevant to major subject m, we propose a
measure that incorporates both the applicability of a major across multiple industries, and the way that that applicability can
change over time.21 Specifically, we will multiply the share of employment in each industry k by a measure of the relevance
of that industry to students with major m in time t. Let REmℓt represent the share of employment that is relevant for major m
in location ℓ and time t, where

REmℓt =
K

∑
k=1

rmktskℓt (1)

rmkt =
(# new graduates in major m and industry k)t

(# new graduates in industry k)t

skℓt =
(# workers employed in k)ℓt
(# workers employed)ℓt

Here, rmkt gives the relevance of industry k to graduates with major m, which we measure as the share of jobs for new
graduates in industry k going to those with major m. Notice that rmkt does not differ across locations ℓ—we are assuming
here that the relevance of a major to a particular industry does not vary geographically.22 Then, skℓt gives the share of
employed workers in area ℓ that work in industry k.

When we use a shift-share instrument below, we will break skℓt into two terms: One that gives the share of employment in
industry k for some base year 0, and another term gkℓt that gives the growth rate in the employment share since that baseline
year. First, define

gkℓt =
(# workers employed in k)ℓt
(# workers employed in k)ℓ0

as the growth rate in the the number of workers in industry k since the base year 0. Then, appendix A.3 shows that

skℓt =
skℓ0gkℓt

∑
k′

sk′ℓ0gk′ℓt
(2)

20Where the DHS classifies degrees as STEM or non-STEM at the six-digit CIP code level, Texas has a degree classification that adds on on two
additional digits for an eight-digit CIP code. When matching these eight-digit codes in with the DHS list, then, we ignore the last two digits added by
Texas.

21In Appendix A.4, we discuss some of the methods other papers have used to link degrees to opportunities in the labor market, and why we think
our method shown here is preferable.

22In our data, we do not observe the locations of people with certain majors after they leave college, and so we cannot directly calculate a relevance
measure that differs by location. Even if we could, this may not be a good decision because local shares of this kind are likely to be noisy, and may not
accurately reflect the share of jobs in industry k and location ℓ that are available to people with the major m. A local rmkℓt term could be greatly effected
by the chosen degrees of local graduates, raising concerns about reverse causality and also omitted variable bias if unknown local factors could affect
both Ymℓt and the rmkℓt term. Instead, then, we assume that rmkt does not vary with location ℓ, and measure it using data from all of Texas. There may
be a concern with this assumption for industries where the activities involved in production differ widely across areas. In the future, this concern could
be addressed more directly by identifying supplemental datasets in which rmkℓt terms can be estimated in different locations ℓ, and viewing the extent
to which those terms vary across ℓ.
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With this, (1) can be rewritten as

REmℓt =
K

∑
k=1

rmkt
skℓ0gkℓt

∑
k′

sk′ℓ0gk′ℓt
(3)

3.2 Estimating the Response of Majors to Industry Conditions

Let m represent academic subject, and ℓ be their location. We will use commuting zones for the location ℓ, as this provides
a natural representation of the local labor market.23 For the results relating to high school course taking, we allow m to be
either “STEM” or “non-STEM,” but for the results at the college level we are able to use a more disaggregated measure and
define m as the 2-digit CIP code of a degree. The equations we estimate will take the form

∆dYmℓt = γmt +β1∆dREmℓt +Xℓtβ2 + εmℓt . (4)

where Xℓt includes a number of controls for students in location ℓ and time t.24 Ymlt is our outcome of interest, which in our
baseline results is the share of classes taken by students from location ℓ in subject m at time t. The ∆d operator means taking
the d-year difference, so ∆dYmℓt = Ymℓt −Ymℓt−d . We will show results for multiple different values of this difference, which
will help to pin down the dynamics of student decision making.

β1 is the key parameter that we want to estimate. It says that when there is a 1 percentage point increase in the share of
jobs that are relevant for major m, the share of students majoring in m increases by β1 percentage points. There are two main
concerns for identifying this coefficient. The first is that unobserved changes in specific labor markets could have an effect
on both employment shares and major shares, creating omitted variable bias. For example, imagine that one of the enjoyable
things about being a financial adviser is getting to golf with your clients, and a new golf course opens up in location ℓ. This
has the potential to increase both the share of jobs held by people with finance degrees and the share of students majoring in
finance, but the response of the students could be more related to the golf course than the movement in employment shares.

Second, we might be worried about reverse causality, especially when Ymℓt is measuring the share of people that actually
graduate with a particular degree. For example, if β1 is positive, it may be that a higher share of people in location ℓ are
holding degrees in major m because a local college is graduating more students with that degree, and not that students are
reacting to changes in the local labor market with the majors they choose.

To mitigate these concerns, we use a shift-share instrument. As shown above, we can rewrite REmℓt as

REmℓt =
K

∑
k=1

rmkt
skℓ0gkℓt

∑
k′

sk′ℓ0gk′ℓt

To make the shift-share instrument Bmlt , we make two changes: First, our concern about omitted variable bias comes from the
fact that the local growth rate gkℓt may be correlated with changes specific to that location like new golf courses. However,
some of the movements in gkℓt are likely also driven by things that are not specific to location ℓ, and that would affect all
locations in Texas. Examples of this include the development of new production methods in a certain industry or increases in
demand from other countries following some kind of trade deal. Therefore, rather than using the location-specific industry
growth rate gkℓt , we use the growth rate in industry k across all of Texas, gT X

kt . Second, rather than allowing rmkt to vary over
time, we fix it at what it was in a base year, rmk0.25 This will mitigate concerns about reverse causality, because we are fixing
the relevance of a particular industry k to a major m, and not allowing it to vary as the share of people majoring in m varies.
Then, the instrument is given by26

Bmℓt =
K

∑
k=1

rmk0
skℓ0gT X

kt

∑
k′

sk′ℓ0gT X
k′t

(6)

23In using commuting zones, we align with other papers in the literature like Autor et al. (2013).
24We link data from each school year to the employment data associated with the fall semester. For example, for the 2010-2011 school year, the

REmℓt variable is measured in 2010. Note that because equation (4) is estimated in differences, an implicit “location” fixed effect has been differenced
out.

25Currently, we are using 1998 as the base year for rmk0 and skℓ0.
26Since (4) is in differences, we use the differenced version of this shift-share instrument in estimation:

∆dBmℓt =
K

∑
k=1

rmk0skℓ0

 gT X
kt

∑
k′

sk′ℓ0gT X
k′t

−
gT X

kt−d

∑
k′

sk′ℓ0gT X
k′t−d

 . (5)
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4 Regression Results

In this section, we present estimates for (4) using Ymℓt taken from different stages in a student’s education. First, we will look
at the effect of a student’s high school labor market on the classes that they take in their senior year of high school. Then, we
will look at the effect of labor markets on the first majors that these students declare when going to college.

4.1 The Courses Taken by High School Seniors

Table 1 shows the results of estimating equation (4),27 where the Ymℓt variable is the share of classes taken by high school
graduates in their senior year that are in subject m, where m could be STEM or non-STEM.28 To sort classes into these
categories, we label classes in the subjects Mathematics, Science, and Computer Science as “STEM,” as well as any “Career
and Technical Education” courses with the subject “Science, Technology, Engineering, and Math.” Then, we label all
remaining classes as “non-STEM,” with the exception of Physical Education courses which do not count as STEM or non-
STEM.

It is known that when clusters are of substantially different sizes, standard-cluster robust estimation will over-reject
the null hypothesis of a null effect (MacKinnon and Webb, 2017). To address this when clustering standard errors at the
commuting zone level, below each table we report p-values from a wild cluster bootstrap method, which performs better in
these circumstances (MacKinnon and Webb 2017, Cameron et al. 2008).

Table 1: Change in the Share of Classes High School Seniors take in subject m

(2) (4) (6) (8) (10)
2-year 4-year 6-year 8-year 10-year

2SLS -0.0450 0.5640 1.0525∗∗ 0.9471∗ 0.9549∗

(0.3986) (0.4110) (0.4041) (0.3914) (0.4540)

Observations 2,412 2,144 1,876 1,608 1,340
Bootstrapped P Value 0.864 0.003 0.011 0.002 0.010
F-Stat 22.654 21.810 20.166 20.389 18.323
Standard errors in parentheses, and are clustered at the commuting zone level.

The STEM and Non-STEM rows only used classes from those subjects, so they have half as many observations.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Each column of the table shows the results of using a different period of time for the difference d. For example, the
estimate from the “6-year” column shows that raising the employment share for a subject by 1 percentage point over 6 years
is expected to raise the share of classes high school seniors take in that subject by 1.0525 percentage points. The point
estimates generally increase with the number of years used difference d until leveling off at an effect around 1. This pattern
also holds true for the other differences from one through ten years not shown here. A larger version of table 1 with all of
these differences, as well as various other regressions included for robustness checks, is present in appendix section B.3.
That appendix holds similar tables for all of the regression results shown here in section 4 of the paper.

The fact that the estimates do not remain constant as different lag lengths are used is interesting. This provides evidence
against a model in which local industry conditions only affect the contemporaneous decisions of students, and past values
of relevant employment shares have no current effects. If that were true, the only relevant distinction between year t and
year t −d would be the employment shares from those specific years, and we would expect the estimated coefficients to be
the same regardless of the lagged difference d. Instead, these results fit better with a more general distributed lag model.
These points are discussed in more detail in appendix B.1. We take these results, along with similar results presented later in
other regressions,29 as motivation for estimating a structural model which more flexibly allows past and present labor market

27Here and throughout section 4, we partial out the Xℓt controls and fixed effects before estimating the regressions.
28We limit the course taking data to courses that are eligible for high school credit. For 2012 and later, this can be done using an explicit variable in

the ERC which indicates whether a course is eligible for high school credit. Where this variable does not exist, we make a guess of whether a course
counts for high school credit using information on the campuses that teach the course and on the course itself.

29It is also worth mentioning that unless the classes that a student takes in high school have no effect on their future course taking, the fact that
local labor markets affect high school classes implies that the local labor market will have non-contemporaneous affects once a student enters college.
We would expect, for example, that taking STEM classes either provides students with a greater amount of human capital specific to STEM, a greater
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conditions to affect a student’s present choices. The estimates shown in table 1, as well as versions of the other estimates
shown in this section, will serve as moments for estimating that structural model.

One possible explanation for why past labor market conditions could continue to affect the present decisions of students
is that students begin preparing for their senior-year coursework before entering their senior year. For example, a student
intending on taking upper-level STEM courses in their senior year may want to be taking the necessary preparatory math
courses in their sophomore or junior years. This could be done informally, by simply selecting those courses, or more
formally by opting into certain “tracks” of high school coursework meant to funnel students toward certain classes as upper-
classmen.30 If there are improved conditions in the STEM labor market, current seniors may have little ability to adjust to
these changes by switching the classes they are taking, either because of administrative difficulties in switching tracks or the
challenges of “catching up” to other students who had already been preparing.

Regardless of why past labor market conditions continue to affect present decisions, an implication of this is that the
full effect of a change in the local labor market could take many years to appear, with each grade level of affected students
completing their schooling and entering the labor market at different times. A positive shock in the oil industry, for example,
may in the short run convince college junior studying chemical engineering to switch their major to petroleum engineering
before graduating next year. The long run effect is potentially much larger, however, because the same shock to the oil
industry can also affect present day high school students. Whereas perhaps only chemical engineers were prepared to switch
to petroleum engineering in the short run, a larger contingent of current high school students may be able to switch since
they can change their preparation before even entering college. These are the sorts of dynamics we intend to explore in the
structural model.

Given that local labor market conditions affect student’s high school course taking, this could be driven by one of two
things: Either students (and perhaps their parents) are themselves reacting to local labor market conditions when they choose
courses, or else school systems are effectively forcing students to respond by somehow changing their course options. We
argue that the dominant effect of these two is student decisions. While we cannot directly measure the internal pressures
school systems might place on students, we can measure the share of courses offered by a schools in a commuting zone that
are either STEM or Non-STEM.31 Table 2 shows the results of estimating equation (4) with this share as the Y variable. The
results are largely null and small in magnitude compared to those shown in the 2SLS line of 1. This provides evidence that
the effects shown in table 1 are driven largely by student reactions to the local labor market as opposed to decisions made by
the local schooling system.

Table 2: Change in the Share of Course Offerings that are in subject m

(2) (4) (6) (8) (10)
2-year 4-year 6-year 8-year 10-year

2SLS -0.0915 0.0045 0.0989 0.1115 0.1592
(0.2204) (0.1963) (0.1754) (0.1691) (0.1850)

Observations 2,412 2,144 1,876 1,608 1,340
Bootstrapped P Value 0.428 0.007 0.105 0.102 0.158
F-Stat 22.654 21.810 20.166 20.389 18.323
Standard errors in parentheses

The STEM and Non-STEM rows only used classes from those subjects, so they have half as many observations.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Finally, having shown that the local labor market can influence students to take more STEM or Non-STEM classes, we

understanding of whether they are interested in STEM topics, or both. Later on in table 10, we will demonstrate the first of these channels, that
increasing the share of classes taken in STEM increases the accumulation of STEM human capital. By increasing the share of classes that students take
in STEM, local labor conditions from high school would thereby also affect a student’s preparation or willingness to take similar courses later on in
college.

30More formal “tracks” of this kind were available to students toward the end of our sample. Specifically, in the Foundations High School Program
(FHSP) went into affect for students entering high school in the 2014-2015 school year. In it, these students could elect early on in high school to
pursue a STEM “endorsement,” which involves choosing from a certain set of courses.

31Technically, we are only observing course offerings by high schools if at least one student decides to take the class. It is possible, then, that schools
do react to local labor market conditions by increasing course offerings, but that this does not show up in the data because no students take advantage
of those additional offerings. Even if this were happening, though, it would only serve to underline the point that it is student reactions to local labor
market conditions rather than changes to course offerings that are driving the results shown in table 1.
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can ask what effect local labor market conditions have on how well students do in these classes. Table 3 shows the results of
estimating (4) when the Ymℓt variable is the share of senior-year classes in subject m where the student received credit. The
“2SLS STEM” and “Non-STEM” rows run these regressions separately for STEM and Non-STEM courses. They are each
included here because the results are dramatically different between the two. For the Non-STEM row, higher labor shares
for Non-STEM workers have positive effects on the share of students in Non-STEM courses that earn credit. Among STEM
classes, the effect is much stronger and moves in the opposite direction. This is what you would expect to find if STEM
classes generally attract students with higher levels of academic ability. In that case, an improvement in the Non-STEM
labor market moves marginal students out of STEM field, and they find themselves to be above-average in the STEM field,
raising the share of Non-STEM classes taken where credit is earned.32 On the other hand, an improvement in the STEM
labor market would move marginal students into STEM classes who were less prepared than their peers, and the overall share
earning credit goes down.33 The overall effect in the 2SLS row tends to be small and negative, reflecting how the negative
effect on STEM passing rates is stronger than the positive effect on Non-STEM passing rates.

Table 3: Change in the Share of Senior-year Classes in subject m where the student earns credit

(2) (4) (6) (8) (10)
2-year 4-year 6-year 8-year 10-year

2SLS 0.0313 -0.0718 -0.1665 -0.1072 -0.0802
(0.0810) (0.0758) (0.0934) (0.0822) (0.0966)

2SLS STEM -0.2011 -0.5634∗∗∗ -0.8684∗∗∗ -0.7042∗∗∗ -0.6694∗∗∗

(0.2022) (0.1684) (0.2045) (0.1677) (0.1937)

2SLS Non-STEM 0.1424 0.2181∗ 0.2702∗ 0.2114 0.1933
(0.1128) (0.0935) (0.1137) (0.1152) (0.1138)

Observations 2,412 2,144 1,876 1,608 1,340
Boot. P Val. for 2SLS 0.931 0.623 0.443 0.738 0.204
Boot. P Val. for STEM 0.410 0.045 0.001 0.001 0.002
Boot. P Val. for Non-STEM 0.441 0.042 0.066 0.141 0.106
F-Stat for 2SLS 22.654 21.810 20.166 20.389 18.323
Standard errors in parentheses

The STEM and Non-STEM rows only used classes from those subjects, so they have half as many observations.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

4.2 The First College Majors Chosen By High School Graduates

In addition to affecting student’s high school decisions, local labor conditions can also affect their first major choices in
college. Table 4 shows the results of estimating equation (4), where the Ymℓt variable is the share of college-bound34 students
graduating from high school in location ℓ at time t that choose major m as their first major in college. Here, we are able to
disaggregate the list of majors beyond the simple “STEM/Non-STEM” distinction, and define each major m at the two-digit
CIP-code level. In the “2SLS STEM” and “2SLS Non-STEM” rows of table 4, we present the separate estimates of equation
(4) using just two-digit CIP codes m that are “STEM” and then only using those that are “Non-STEM.”35 As before, we use a

32Another possible explanation here is that students have greater motivation to do well in non-STEM courses when the labor market for non-STEM
workers is better. However, this does not help to explain why STEM students would do worse when the labor market for STEM workers improves.

33Another possible explanation, along the lines of what Ahn et al. (2022) find in a college setting, is that professors increase their grading standards
when there is higher demand for their classes. This would explain why students are less likely to earn credit in good times when the STEM labor market,
but does not do as good of a job explaining why improvements in the Non-STEM labor market would increase the share earning credit in Non-STEM
courses. Given the hypothesis of Ahn et al. (2022), you might expect the professors of Non-STEM classes to raise their grading standards in that case,
and then the effects would be negative for both Non-STEM and STEM.

34As noted earlier, the only college students that we are including are those who attend public universities or community colleges in the state of Texas
covered by the ERC data. In the future, we will test the robustness of our conclusions to including students that attend independent universities and
colleges outside of Texas. Since we are only including students who attend college here, this is a measure of the “intensive” margin of what a student
majors in conditional on them attending college. Later on, we will also present results that incorporate the “extensive” margin of whether a student
attends one of the college options we consider.

35We describe how we divide two-digit CIP codes into the “STEM” and “Non-STEM” categories in appendix section A.6.
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wild cluster bootstrap to test the statistical significance of the 2SLS estimates, and place the resulting p-values at the bottom
of the table.

The results show that the effects of local labor market conditions among STEM majors are much more precisely es-
timated, and show consistent positive effects. In appendix section B.3, we present similar robustness checks for these
regressions as we did for the high school course taking regressions above.36

Table 4: Change in the Share of College-Bound High School Graduates Choosing m as their First Major in College

(2) (4) (6) (8) (10)
2-year 4-year 6-year 8-year 10-year

2SLS 1.5376 1.3149 1.5956 1.8343 2.4063
(0.8706) (1.3821) (2.9268) (3.1406) (4.1204)

2SLS STEM 0.7077∗∗ 0.5621∗∗ 0.4929∗∗ 0.4770∗∗ 0.4790∗

(0.2699) (0.2131) (0.1711) (0.1740) (0.1949)

2SLS NonSTEM 2.0733 2.2386 -9.7656 -15.9694 -13.1304
(1.4753) (3.7166) (95.7088) (181.2749) (103.7415)

Observations 41,004 36,448 31,892 27,336 22,780
Boot. P Value for 2SLS 0.023 0.238 0.403 0.376 0.360
Boot. P Value for 2SLS STEM 0.012 0.019 0.009 0.016 0.027
Boot. P Value for 2SLS NonSTEM 0.060 0.334 0.858 0.879 0.837
F-Stat for 2SLS 6.034 2.396 0.700 0.732 0.542
Weight 1998 HS

Grads
1998 HS

Grads
1998 HS

Grads
1998 HS

Grads
1998 HS

Grads
Standard errors in parentheses

The STEM row used 23.529% of the observations from the 2SLS row, and the NonSTEM row used the other 76.471%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Another possible way of preparing these results would be to define Ymℓt as the share of all students graduating from high
school in location ℓ at time t that choose major m as their first major in college. The results shown in Table 4 computed this
share only over students who attended college, but this new share also includes students that graduated high school and did
not attend a Texas public or community college.37 Therefore, in addition to the “intensive” margin of deciding what to major
in once at college, it also measures the “extensive” margin of deciding to attend college at all. It is a unique advantage of
our data set that we are able to measure this share, because data sets which are specific to college can only observe students
conditional on them having made the decision to attend college. The results of using this “extensive” method to calculate
the Ymℓt share are shown in table 25 in appendix B.3. The results are similar to those showed at the intensive margin, with
consistent positive effects of local labor markets among STEM classes and statistically insignificant effects for Non-STEM
classes.

4.3 The Majors that Students have when they Graduate College

We now turn to estimating the effects of local labor market conditions on the majors that students have when they graduate
college. There are many potential years in which local labor market conditions could influence this outcome, from a student’s
high school years or before all the way up until the year they graduate college. For fitting the structural model, we will use
moments taken at two of these time periods. First, we will look at the effects of local labor market conditions measured in
the year a student graduates high school on the final major that they have when graduating college. To estimate this, we set

36We also include additional tables in that appendix section which present these estimates separately for students attending community college and
for students attending public universities, as well as a table which shows these results using the college’s location rather than the student’s high school
location.

37Since our results shown here are only for students that attend public universities and community colleges in Texas covered by the TSP, we cannot
say for certain that the additional students included in this share did not attend college anywhere. However, for certain years we can pair our data with
data from independent universities in Texas and all colleges covered by the NSC database, which together comprise a much more thorough list of the
colleges that students could have attended. In the future, we can use these additional data sets to check the results that we show here.
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Ymℓt in equation (4) equal to the share of all students graduating from high school in location ℓ at time t that graduate from
college with major m and do so within 6 years of their high school graduation year.38 Table 5 shows the results of estimating
this equation, and the results are similar to those shown for first major choices in the previous section. “STEM” majors are
the only ones with statistically significant effects, and those effects are positive.

Table 5: Change in the Share of College Graduates Choosing m as their Final Major in College, with labor market conditions
measured in the Senior Year of High School

(2) (4) (6) (8) (10)
2-year 4-year 6-year 8-year 10-year

2SLS -0.1949 -0.7927 -0.9348 0.0561 0.0332
(0.6499) (1.1593) (1.8148) (0.5678) (0.6927)

2SLS STEM 0.6342 0.3523∗ 0.2962∗ 0.2683 0.3337∗

(0.4082) (0.1689) (0.1485) (0.1377) (0.1661)

2SLS NonSTEM -0.8122 -3.2027 12.3443 -0.8434 -1.3981
(1.2271) (7.1581) (113.3491) (4.2624) (8.0831)

Observations 31,824 27,268 22,746 18,190 13,634
Boot. P Value for 2SLS 0.736 0.408 0.425 0.884 0.936
Boot. P Value for 2SLS STEM 0.117 0.068 0.085 0.081 0.096
Boot. P Value for 2SLS NonSTEM 0.384 0.503 0.842 0.721 0.762
F-Stat for 2SLS 3.497 1.513 0.593 1.523 0.977
Standard errors in parentheses

The STEM row used 23.529% of the observations from the 2SLS row, and the NonSTEM row used the other 76.471%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Second, we will look at the effects of local labor market conditions measured in the year a student graduates college on
the final major that they have when in that year. Taking all students who graduated high school in location ℓ and then went on
to graduate college in year t, here Ymℓt is the share of those students that graduated with major m. Table 6 shows the results
of those regressions. The differences between tables 5 and 6 encode important information about the relative importance of
local labor market conditions at different times in a student’s progression, and will be useful in fitting the structural model.39

Qualitatively, though, the effects are again broadly similar to what has been seen before, remaining largely positive for STEM
majors. One difference for the Non-STEM majors is also showing a statistically significant positive effect.

4.4 The Effects of Relevant Employment on Local Wages

Having established that students’ choices between academic subjects in high school and college respond to local employment
levels in industries where those subjects are relevant, there remains a question about why students respond in this way. In
this section, we will examine the channel of wages. One possible intuition here is that industries may need to raise their
wages in order to capture a larger share of employed workers with a certain skill set in a local area. To the extent that this
occurs, the resulting connection between the relevant employment share and wages may help to explain why students are
responding to the relevant employment rates: By studying subjects that are more highly demanded locally, they are able to
secure higher wages for themselves in the local economy.

We create a measure of relevant wages RWmℓt for each major group m, location ℓ, and year t. Specifically, we define
RWmℓt as the expected average industry wage for employed workers with major m, and construct it similarly to our measure
of relevant employment REmℓt . More details are provided in appendix section A.5.

Table 7 shows the results of estimating equation (4) with the percentage change in RWmℓt as the Y variable.40 To take

38Placing a time limit like “within 6 years” is important, because we cannot rule out that the students without degrees by the end of our sample period
will not ever earn a degree with a public or community college in Texas.

39Tables 28 and 29 in appendix section B.3 present similar robustness checks for these results as were prepared elsewhere in this section, and table
30 in that section provides a version of table 6 in which labor market conditions are measured around the college location.

40That is, we set (RWmℓt−RWmℓt−d)/RWmℓt−d as the ∆dYmℓt variable. Estimating this regression in percentage changes like this will hopefully make it easier
to use the estimates for fitting our structural model.
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Table 6: Change in the Share of College Graduates Choosing m as their Final Major in College, with labor market conditions
measured at the year of college graduation

(2) (4) (6) (8) (10)
2-year 4-year 6-year 8-year 10-year

2SLS 0.2176 0.7759 1.4049 -0.6419 5.0134
(0.2515) (0.5142) (2.0767) (2.7116) (9.4967)

2SLS STEM -0.0772 1.0337∗∗∗ 1.0643∗∗ 0.4844 0.2694
(0.2314) (0.3060) (0.3994) (0.2477) (0.3470)

2SLS NonSTEM 0.3344 0.4698 40.2345 2.6526 2.2475∗

(0.3849) (0.8293) (8927.6760) (5.7570) (1.1193)

Observations 29,614 25,058 20,502 15,946 11,390
Boot. P Value for 2SLS 0.370 0.072 0.310 0.676 0.427
Boot. P Value for 2SLS STEM 0.753 0.004 0.016 0.094 0.529
Boot. P Value for 2SLS NonSTEM 0.366 0.528 0.994 0.446 0.059
F-Stat for 2SLS 17.565 4.971 0.517 0.316 0.220
Standard errors in parentheses

The STEM row used 23.529% of the observations from the 2SLS row, and the NonSTEM row used the other 76.471%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

the two-year change estimated in the “2SLS STEM” row as an example, the way to interpret these coefficients is that a 1
percentage point increase in the relevant employment share REmℓt over two years increases relevant wages RWmℓt by 5.2375
percent.

Here, the “2SLS STEM” row shows that among STEM majors, movement in the relevant employment share has a large
effect on wages which generally grows in magnitude as the lags increase. The “2SLS Non-STEM” row, by contrast, shows
effects that are smaller and less precise. This may help to explain why student’s first major responses seem more responsive
to local labor market conditions for STEM majors as opposed to Non-STEM majors.

5 Model

In this section, we outline a structural model that we intend to estimate using a set of the shift-share estimates like those
described above as moments. The central goal of this model is to describe how students make decisions over time, and
particularly how lagged values of local relevant employment shares could influence a student’s present decisions. In our
model, students can potentially begin to prepare for their eventual college major by altering the courses that they take while
in high school.

There are two primary channels by which a student’s past decisions can affect their present decisions within the model.
First, decisions between courses in high school affect student’s accumulation of subject-specific human capital. In this way,
past employment shares can influence a student’s present decisions if they led the student to invest in different kinds of human
capital. Second, there may be transition costs between different academic tracks and options. This is largely captured here in
the utility costs associated with switching tracks, which may reflect things like administrative hurdles to switching majors,
psychological costs associated with switching one’s plans, or the difficulty of “catching up” to peers that have already been
pursuing a certain track.

Here is a general outline of the model timing: A model period represents two years. At the beginning of each period,
students observe the local labor market.

1. Period 1 (Freshman and Sophomore Years of High School): Students enter the model with initial STEM and non-
STEM abilities. At the end of the period, they choose between a STEM-intensive senior year course-load and non-
STEM intensive course load.

2. Period 2 (Junior and Senior Years of High School): After accumulating human capital from their courses, students
choose whether to go to college or directly into the labor market. If they choose college, they also pick their initial
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Table 7: Percentage Change in Relevant Wages

(2) (4) (6) (8) (10)
2-year 4-year 6-year 8-year 10-year

2SLS 4.4736 6.1818 20.8868 17.5381 20.3676
(3.1330) (5.0250) (33.6415) (22.2037) (31.1140)

2SLS STEM 5.2375∗ 7.2805∗∗∗ 14.5189∗∗∗ 16.3991∗∗∗ 15.9682∗∗∗

(2.2587) (1.9690) (2.1652) (2.0423) (2.1182)

2SLS NonSTEM 3.4740 2.6421 3.8840 14.6670 8.7188
(4.4242) (9.8271) (23.8056) (76.8673) (39.5854)

Observations 45,492 40,936 36,414 31,858 27,302
Boot. P Value for 2SLS 0.149 0.120 0.300 0.197 0.277
Boot. P Value for 2SLS STEM 0.052 0.006 0.000 0.000 0.000
Boot. P Value for 2SLS NonSTEM 0.336 0.661 0.779 0.746 0.712
F-Stat for 2SLS 6.675 2.709 0.392 0.624 0.419
Standard errors in parentheses

The STEM row used 23.529% of the observations from the 2SLS row, and the NonSTEM row used the other 76.471%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

major in this period.

3. Period 3 (Freshman and Sophomore Years of College): Students choose to whether to continue in college or drop out.
If they decide to continue, they also decide whether to switch majors for period 4.

4. Period 4 (Junior and Senior Years of College): Students choose whether to drop out or graduate with their chosen
major.

5. Labor Force: Once in the labor force, students choose which industry to work in each period. Workers retire T periods
after graduating high school, so students who graduated from college work for T −2 periods.

This information on the model timing is presented graphically in figure 3. For easier exposition below, we will present
these periods backwards from the time that a student is in the labor market.

5.1 Labor Market

A student’s college outcome defines their college degree “m” in the labor market. This is the two-digit CIP code of their
degree for students that graduate college, and a “non-college” type for those that do not. A worker is able to supply an
amount of “effective labor” that depends on their type, experience eit , and STEM and non-STEM abilities:

limt = Aτs
m

is13Aτn
m

in13eτe
m

it (7)

Ais13 and Ain13 are the STEM and non-STEM abilities from the end of twelfth grade.41 We measure experience eit as the
number of periods since an individual has graduated high school.

Each type of worker receives a different wage for their effective labor wmt . The total amount of wages a person receives
in the labor market is then given by wimt = limtwmt , and this determines the amount of utility that they receive each period
from the labor market:

Uimt = δ
lab
0m +δ

lab
1 ln(wimt)+δ

lab
3 1{Dropped out last period}

Here, δ lab
3 is a one-time utility cost or benefit a student receives if and when they drop out of college without earning a

college degree.

41The idea here is to get a measure of their human capital when entering college. The τ terms in equation (7) capture both the growth in human
capital that occurs through pursuing degree type m, and also the productivities of STEM or non-STEM ability in generating effective labor. We will not
differentiate between these two functions of the τ terms.
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Figure 3: Graphical Depiction of the Model Timing
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Each period, the share of employment in STEM-intensive industries SEt is realized. We assume that this share follows
the following AR-1 process over time:

SEt+1 = ρ
SE
0 +ρ

SE
1 SEt +ω

SE
t (8)

This share plays an important role within the model because it is predictive of the effective wages for each degree type in the
next period:

log(wmt+1) = ρ
w
0m +ρ

w
1mSEt +ω

w
mt (9)

From the moment that they enter the model onwards, students are able to use information on the current SEt to forecast the
future path of SEt and their eventual labor market wages using formulas (8) and (9). Putting these two equations together
allows students to predict the future path of SEt and wmt . Specifically, a student curious about their wages at some time t̃ in the
future would use equation (8) to project the path of the STEM-Intensive employment share up until t̃−1, and then they would
use the expected SEt̃−1 to forecast the wages of interest wmt̃ using equation (9).42 The ω terms create uncertainty in these
predictions, and students will factor that uncertainty into the decisions that they make. We assume E

[
ωSE

t

]
= E

[
ωw

mt
]
= 0,

that ωSE
t is normally distributed, and that ωw

mt and ωSE
t are uncorrelated.

It would be possible to assume that equations (8) and (9) truly reflect the aggregate movements in STEM employment
shares and wages, in which case the students in our model would have fully rational expectations. Within the current
estimation of the model, we do use equation (8) to develop SEt shares over time.43 However, when comparing to the real
world, it seems more reasonable to view students’ use of equations (8) and (9) as a restriction that we impose on their ability
to forecast future values. This is discussed in more detail in appendix section C.1.

From the perspective of a student in high school or a student in college, the value function upon entering the labor force
is given by their utility from having a degree and their earnings. These earnings depends on a student’s ability, which will
never change while they are in the labor force, and the future values of wages for their type, which could change. To make
the notation less cluttered, let ΩSE =

{
ωSE

t

}
t

represent the set of all future values of ωSE
t shocks, and t ′ represent the number

of periods a person has spent in the labor force from 1 to Tim.44 Ignoring the potential one-time dropout cost δ lab
3 , a student’s

42In matrix form, the student would create the following expectation about the SEt and wmt+1 values d periods from now:

E

 1
SEt+d

log
(
wmt+d

)
=

 1 0 0
ρSE

0 ρSE
1 0

ρw
0 ρw

1 0


d  1

SEt
0


43In the future, we intend to change this so that the true development of SEt shares over time is more realistic to how this process occurs in the real

world. Once we make this adjustment, students’ use of equations (8) and (9) will not be perfectly rational within the context of the model.
44This is indexed by m because different worker types will have different amounts of time to work in the labor force. Students that begin working

right after high school will work for two additional periods in the labor force (representing 4 years), since they do not need to spend that time in college.
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value function when entering the labor market is given by

vlabor
it (Aist ,Aint ,m,SEt−1) =

∫
ΩSE

Tmi

∑
t ′=1

β
t ′−1
(

δ
lab
0m +δ1 log(wikmt)

)
dG
(

Ω
SE
)

=

(
1−β Tmi

1−β

)
δ

lab
0m +δ

lab
1

∫
ΩSE

Tmi

∑
t ′=1

β
t ′−1 (log(limt)+ log(wmt)

)
dG
(

Ω
SE
)

=

(
1−β Tmi

1−β

)
δ

lab
0m +δ

lab
1

(
Tmi

∑
t ′=1

β
t ′−1 log(limt)

)
+δ

lab
1

Tmi

∑
t ′=1

∫
ΩSE

β
t ′−1 log(wmt)dG

(
Ω

SE
)

(10)

where G
(

ΩSE
)

is the distribution of future ωSE
t shocks. The first two terms term above do not depend on wages in the labor

market. We can simplify them as(
1−β Tmi

1−β

)
δ

lab
0m +δ

lab
1

(
1−β Tmi

1−β

)(
log
(
τ

c
m
)
+ τ

n
m log(Ain)+ τ

s
m log(Ais)

)
+δ

lab
1 τ

e
m

Tmi

∑
t ′=1

β
t ′−1log(eit)

The second term of equation (10) involves taking the expectation of log wmt terms each period using equations (8) and
(9), which is also written in the equivalent matrix notation in footnote 42. Since the student’s future utility depends upon
log wages and E

[
ωw

mt
]
= 0, the ωw

mt terms drop out of the expectation here. An implication of this is that increasing or
decreasing the variance of the ωw

mt terms will not affect student decisions. The variance of the ωSE
t terms, however, may still

affect student decisions, because students integrated over those shocks in previous periods when their preferences were not
so linear.45 This will be made clear in the sections below.

5.2 College

While in college, students have a major mit that was chosen in the last period,46 and observe the current STEM-industry
employment share SEt . They also have some amount of STEM ability Ais13 and non-STEM ability Ain13 from high school.47

We will not explicitly model human capital accumulation in college, but recall from the previous section that the τm terms
will capture growth in human capital specific to a student’s major m. For convenience, let c represent whether major m is in
a STEM or non-STEM category. The state space is

{Ais13,Ain13,mit ,SEt}

Which will be shortened below to
{Ai13,mit ,SEt}

While in college, a student’s flow utility depends upon a student’s abilities and an idiosyncratic preference shock εimt :

Uict = δ
col
0m +δ

col
1c log(Aic13)+δ

col
2c SEt + trans f er costsct + εimt

= uimt + εimt

Here, trans f er costsct gives costs for transferring between subjects that can depend on a student’s year in school. These
depend upon the specific period, and so they will be explained in more detail below.

5.2.1 Period 4 (Junior and Senior Years of College)

If students decide to switch between a STEM and a Non-STEM major between period 3 and 4 in college, they will face a
transfer cost in their utility function:

trans f er costsc4 = δ
trans f er
c4 1{ci3 ̸= ci4} (11)

45In the setup of Buchinsky and Leslie (2010), it is important that individuals take into account the fact that their forecasted estimates are uncertain.
Students take this uncertainty into account in our context as well, but we are clarifying here that the only uncertainty in the ωSE

t will actually affect
student decisions.

46Since a student’s college major defines their type in the labor market, we will use the same notation m for both of these things. Here it is indexed
by time t because students can change their major while in college, but after graduating from college we will assume that their degree type m is fixed.

47The “13” indicates that these abilities are taken from the end of twelfth grade, and the beginning of the period after.
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At the end of period 4, students choose whether to enter the labor market as a college graduate with their major mit or to
enter the labor market without graduating. For simplicity, we index these possible options with mit+1. Their value function
when making this decision is the value of entering the labor market, vlabor

imt . Students receive a type-1 extreme value shock
εimt+1 between these choices, and use it to make their decision:

mit+1 = argmax
{

vlabor
it+1 (Ais13,Ain13,mit+1,SEt)+ εimt+1

}
The value function in this period is given by

vit (Ai13,mit ,SEt−1) =
∫

ωSE
t−1

uimt +β log

 ∑
mit+1

exp
(

vlabor
imt+1 (Ai13,mit+1,SEt)

)
dF

(
ω

SE
t−1

)
(12)

where dF
(

ωSE
t−1

)
is the normal distribution for ωSE

t−1.

5.2.2 Period 3 (Freshman and Sophomore Years of College)

Upon entering college, students will pay a utility cost meant to capture the adjustment between a non-STEM intensive
courseload in high school and a STEM intensive courseload in college, or vice versa.

trans f er costsc3 = δ
trans f er
c3 Sit (13)

Here, Sit is the share of a student’s senior-year classes that were in STEM. This will be made more clear in the following
section on high school.

At the end of period 3, students choose whether to stay in college or drop out. If they decide to stay in college, they also
choose whether to switch their major. For simplicity, we will represent this as a single decision where entering the labor
market is included as an option for the major.48 Their value function when making this decision is

vit (Ai13,mit ,SEt−1) =
∫

ωSE
t−1

uimt +β log

 ∑
mit+1

exp
(
vit+1 (Ai13,mit+1,SEt)

)
dF

(
ω

SE
t−1

)
(14)

Then, given an ideosyncratic preference shock εimt+1, students make their decision for next period as

mit+1 = argmax
{

vit+1 (Ai13,mit+1,SEt)+ εimt+1
}

5.3 High School

5.3.1 Period 2 (Junior and Senior Years of High School)

In their junior and senior years of high school, students take a combination of STEM and Non-STEM classes. The classes
that students take contribute to their STEM and non-STEM abilities, where STEM classes are more helpful for STEM ability
and non-STEM classes are more helpful for non-STEM ability.

While in high school, a student’s STEM or non-STEM human capital for the next grade level are produced as follows:

log(Aict+1) = γ0c + γ1c log(Aist)+ γ2c log(Aint)+ γ3cPist + γ4cPint + γ5cSit (15)

Here, the Pict terms are indicators for whether a student passes all of their classes of type c. The probability of passing all
classes in a certain subject c is

P{Pict = 1}= Φ
(
κ0c +κ1c log(Aist)+κ2c log(Aint)+κ3cSit

)
(16)

Equations (15) and (16) will together serve to update student human capital in the junior and senior years. We define them
over an academic grade level rather than a model period for ease of estimating in the data, and so human capital will be
updated twice in this period.

48In the future we can make this a nested logit, where “staying in school” and “going to the labor market” are the two nests, and after picking “staying
in school” a student can also choose their major.

18



In the first update, representing a student’s junior year, we give all modeled students the average STEM class share from
the data for that grade level. For their senior year, however, we allow model students to choose either a “STEM intensive” or
“non-STEM intensive” track. Index these tracks by c. Each track c involves STEM classes and non-STEM classes, with the
difference being that the share of classes taken in STEM S is higher for the STEM track. Students commit to their senior-year
track option at the end of the prior model period (period 1).

While in the second period, the student receives utility from their chosen track as follows:

Uict = δ
hs
c +δ

hs
1 SitSEit + εict

= uict + εict

Here, εimt is a type-1 extreme value preference shock for the course selection. We normalize the δ hs
c constant to zero for the

non-STEM track.
Then, students choose either to go to college or the labor market after high school. If they choose college, they also

choose an initial major. Again, for simplicity, we index all of these choices with mit+1. After receive an idiosyncratic
preference shock between these options εimt , they then choose based on

mit+1 = argmax
{

vit+1 (Ai13,mit+1,SEt)+ εimt+1
}

The value function in this period is

vit (Aist ,Aint ,cit ,SEt−1) = ∑
p∈P

P(p)
∫

ωSE
t−1

uict +β log

 ∑
mit+1

exp
(
vit+1 (Ai13,mit+1,SEt)

)
dF

(
ω

SE
t−1

)
(17)

where p represents a possible combination of passing STEM and non-STEM classes in the junior and senior year, and P is
the set of all these possibilities.

5.3.2 Period 1 (Freshman and Sophomore Years of High School)

Students enter the model knowing their what their initial STEM and non-STEM abilities Ais11 and Ain11 will be at the
beginning of grade 11. At the end of the period, students receive a preference shock εict+1 and choose a high school track c.
This decision is given by

cit+1 = argmax
{

vit+1 (Aist+1,Aint+1,cit+1,SEt)+ εict+1
}

6 Identification and Moments

To ease the computational burden of solving this model, we will estimate a large number of the parameters outside the model.
Then, we will estimate the remaining parameters using simulated method of moments estimation.

6.1 Parameters Identified Outside the Model

6.1.1 Terms for Human Capital Growth and Passing Classes in High School

The first terms that we will estimate outside of the model are the γ terms related to human capital accumulation and the κ

terms related to the probability of passing classes outside of the model. This will involve estimating the equations (15) and
(16).

There is no single measure of STEM or non-STEM ability within our data. Instead, we have a number of TAAS stan-
dardized test scores shown in table 8 that we will treat as measures of unobserved STEM and non-STEM ability. Specifically,
we assume that the measure for ability type c from test r takes the form

Zr
icg = µ

r
c +λ

r
c log

(
Aicg
)
+ω

r
icg (18)

where Zr
icg is a student’s score on test r in grade g, and the student’s underlying ability is given by log

(
Aicg
)
. The µr

c and λ r
c

are terms that adjust for how test scores may be given on different scales,49 and for how some tests are harder than others

49For example, one score may be given on a scale from 0 to 100, while another scale goes from 0 to 1000.
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while measuring the same underlying ability. Finally, the ωr
icg term reflects “measurement error,” or differences between a

student’s score and what would be predicted based on their underlying ability. We assume that this measurement error has
a mean of zero50 and is independent across students and tests. However, we do not take a specific stance on where this
measurement error comes from. It could be influenced by idiosyncratic shocks to students like distractions in the classroom,
for example, and its importance may differ across tests if certain tests do a better job of measuring ability than others.51

Table 8: Standardized Test Scores in the TSP

Grade STEM Non-STEM

91 TAAS Math, Science TAAS Writing, Reading, Social Studies
111 TAAS Math TAAS Writing, Reading
122 SAT Math SAT Verbal
1 Each TAAS test listed here is typically taken toward the end of the previous year: The

tests listed for ninth grade are generally taken in April at the end of the eighth grade year,
and the tests for 11th grade are taken in February of the tenth grade year. We associate
these tests with the following grade level to capture a student’s ability when entering that
grade level.

2 We count SAT tests taken from May before the school year a student graduates high
school through April of that school year as being taken in twelfth grade.

In this kind of measurement framework, it is straightforward to identify the µr
c and λ r

c terms in equation (18) for a
given ability type c when the average latent ability E

(
log
(
Aicg
))

and the variance of latent ability Var
(

log
(
Aicg
))

are both
known. In the case that three tests r, r′, and r′′ are available for ability type c, the equation for λ r

c is

λ
r
c =

1
Var
(
Aicg
)
√√√√√Cov

(
Zr

icg,Z
r′
icg

)
Cov

(
Zr

icg,Z
r′′
icg

)
Cov

(
Zr′

icg,Z
r′′
icg

)
and the equation for µr

c is
µ

r
c = E

(
Zr

icg

)
−λ

r
c E
(
Aicg
)

Appendix section C.2 gives additional details on how we implement this estimation in the data, particularly in cases where
three tests are not available in ability subject c, but each case follows the same general pattern presented here.

The problem comes when the the average latent ability E
(

log
(
Aicg
))

and the variance of latent ability Var
(

log
(
Aicg
))

are not known. If only one period were being used, this could be quickly resolved by normalizing the latent ability for
the population so that E

(
log
(
Aicg
))

= 0 and Var
(

log
(
Aicg
))

= 1. However, our goal will be to identify human capital
accumulation across subsequent grade levels. In that case normalization cannot fully solve the problem, because it is not
reasonable to normalize that E

(
log
(
Aicg
))

= 0 both in a grade g and the next grade g+1. Ideally, the average ability will
have increased over that interval.

Agostinelli and Wiswall (2022) show that in contexts like these, in order to identify the development of human capital
over time, we need to have either age-invariant measures or an assumption about the underlying distribution of human capital.
The TAAS standardized tests are good to use in our application because all students are required to take them, and the same
test is administered to all students. Unfortunately, since a different test is administered to each grade level, they do not
provide age-invariant measures of ability over time. Instead of using age-invariant measures, then, we will take the second
approach suggested by Agostinelli and Wiswall (2022), and make an assumption about the underlying distribution of ability.
Specifically, we will assume that two features of the ability distribution in Texas match with data from the NLSY97 data:

1. We assume that the aggregate growth rate between grades in each average latent ability and in the variances of those
abilities are the same between the TSP and a matched sample from the NLSY97.

50The assumption that E
(

ωr
icg

)
= 0 comes without loss of generality, because if it were the case that E

(
ωr

icg

)
equaled some x ̸= 0, this x could

be absorbed into the constant µr
c . In other words, we would be estimating the coefficients of Zr

icg = µ̃r
c +λ r

c log(Aic)+ ω̃r
icg, where µ̃r

c = µr
c + x and

ω̃r
icg = ωr

icg − x.
51As a measure of how good each test is at capturing underlying abilities, we report the signal-to-noise ratios of each test that we consider in table

32.
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2. We assume that the correlation between STEM and non-STEM ability in eleventh grade from the TSP matches this
correlation from a matched sample in the NLSY97.

To make these assumptions as plausible as possible,52 we take the following steps to make the NLSY97 match our
data in the ERC: First, we limit the NLSY97 sample to students attending public high school who obtained a high school
diploma. Second, we use data collected over a similar time frame from each sample. The ASVAB test was given to NLSY97
respondents from the summer of 1997 through the spring of 1998, and TAAS test was administered in Texas from 1991 until
it was replaced in 2003. For our sample, we will use TAAS tests taken from 2000 to 2003. Third, when estimating things in
the NLSY97, we use weights taken from the TSP for the sample of students that the NLSY97 estimates will be applied to.
This is done by segmenting the student population into demographic groups D, which are defined by a combination of their
race or ethnicity and sex. Then, the original sample weight wi provided by the NLSY97 is modified as follows:53

new weight =
(

# in group Di in TSP
# in TSP

)
wi

∑ j∈Di w j
(19)

Finally, we use the SAT Math and Verbal scores as “shared measures” of ability, which are present in both the NLSY97
and the TSP. This allows us to identify the relevant measurement parameters for the SAT tests in the NLSY97, and apply
those same measurement parameters to the SAT data from the TSP.54 If we did not have this shared measure, we would
have to make the additional stronger assumption that the levels of aggregate expected ability and aggregate variance matched
between the TSP and the NLSY97. As it is, through the SAT tests we are able to identify the differences in these levels
between the two sources, and need only to assume that their growth rates from one grade level to the next are the same.

Table 9: Standardized Test Scores in the NLSY97

Grade STEM Non-STEM

9 PIAT Math
121 SAT Math SAT Verbal

All Grades:
ASVAB STEM Tests: Mathematical Knowl-
edge, Arithmetic Reasoning, Numerical Opera-
tions, General Science

ASVAB Non-STEM Tests: Word Knowledge,
Paragraph Comprehension

1 To match our method in the ERC data, we count SAT tests taken from May before the school year a student graduates high school through
April of that school year as being taken in twelfth grade.

The ASVAB test in the NLSY97 gives us four measures of STEM ability and two measures of non-STEM ability.55 The
PIAT Math Test was also given to ninth graders over the same time period, and serves as additional measure of STEM ability
for that grade level.56

We make the normalization that E
(
log(Aict)

)
= 0 and Var

(
log(Aict)

)
= 1 for both ability types c in grade 9 in the

NLSY97. Then, we can identify the measurement parameters for all high school grade levels in the NLSY97, and the
assumptions we have made above along with the presence of the SAT as a shared measure allows us to do the same for the
TSP.57 Table 32 in appendix section C.2 shows the estimated measurement parameters and their signal to noise ratios.

52Given the focus of our model on how students react to local employment conditions, one potential criticism of this approach is that it ignores how
the growth rate in expected ability or the variance of ability depends upon student reactions to aggregate movements in employment. We address this
criticism more directly in appendix section C.2.

53We calculate this “new weight” multiple times based on the TSP student group we are trying to match. For example, in calculating the µ and λ

terms for SAT tests, we calculate
(

# in group Di in TSP
# in TSP

)
based on students who graduated at or before the 2003-2004 school year, had non-missing ethnic

and sex data, and took their SAT with the highest recorded combined score sometime from the (prior) summer through the spring of the school year
they graduated high school. For this restriction, we use May as the first month of summer.

54Students self-select into taking the SAT, but we are assuming that this self-selection is the same for students in the NLSY97 and in the TSP once
we correct the weights as shown in equation (19).

55The specific measures of STEM and non-STEM ability that we selected are shown in Table 9.
56Specifically, the ASVAB was administered from the summer of 1997 to the spring of 1988, and the PIAT Math test was administered in round 1 to

all ninth grades from either February through October of 1997 or March through May of 1998. After round 1 of the NLSY97 survey, there were age
restrictions on who received the PIAT Math test in subsequent rounds, and so rather than finding a way to correct for that selection we will only use the
PIAT Math Test scores from round 1.

57More details on this are included in Appendix C.2.
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Then, we can use these measurement parameters to identify the gamma coefficients from equation (15). Let

Z̃r
icg ≡

Zr
icg −µr

c

λ r
c

= log
(
Aicg
)
+

ωr
icg

λ r
c

(20)

be the residualized version of measure Zr
icg. If we plug this residualized version into equation (15), we get

Z̃r′
icg+1 = γ0c + γ1cZ̃r

isg + γ2cZ̃r
ing + γ3cPisg + γ4cPing + γ5cSig (21)

or

Z̃r′
icg+1 = γ0c + γ1c log

(
Aisg
)
+ γ2c log

(
Aing

)
+ γ3cPisg + γ4cPing + γ5cSig − γ1c

ωr
isg

λ r
m

− γ2c
ωr

ing

λ r
n

+
ωr′

icg+1

λ r′
c

(22)

where the last three terms are unobserved. This creates a problem for estimating γ1m and γ2m with OLS, because Z̃r
ist and

Z̃r
int will be correlated with things in the error term. To deal with this, we follow Agostinelli and Wiswall (2022) in using

our additional residualized measures for STEM and non-STEM ability at time t as instruments for Z̃r
ist and Z̃r

int , and estimate
equation (21) with two stage least squares.58 The estimates for equation (16) can be prepared in a similar way, using an
IV-probit. This gives us estimates of the γ and κ coefficients, which are shown in tables 10 and 11.

Table 10: Estimates for γ terms related to Human Capital Accumulation

(1) (2) (3) (4)
Underclassmen
STEM Growth

Underclassmen
Non-STEM Growth

Upperclassmen
STEM Growth

Upperclassmen
Non-STEM Growth

STEM Ability at Beg. of Period 1.2192∗∗∗ 0.4309∗∗∗ 0.4567∗∗∗ -0.4353∗∗∗

(0.0336) (0.0298) (0.0899) (0.1100)

Non-STEM Ability at Beg. of Period -0.3577∗∗∗ 0.7035∗∗∗ 0.6089∗∗∗ 1.5728∗∗∗

(0.0369) (0.0321) (0.1166) (0.1455)

Received Credit for All STEM Classes 0.0602∗∗∗ -0.0180∗∗ 0.0777∗∗∗ 0.0694∗∗∗

(0.0104) (0.0063) (0.0138) (0.0145)

Received Credit for All Non-STEM Classes 0.0627∗∗∗ 0.0582∗∗∗ -0.0250 -0.0745∗

(0.0048) (0.0044) (0.0223) (0.0302)

Percent of Classes that are STEM 0.6293∗∗∗ -0.2028∗∗∗ 0.9088∗∗∗ 0.4453∗∗∗

(0.0941) (0.0511) (0.0820) (0.0759)

Constant 0.8856∗∗∗ 1.0709∗∗∗ -0.2048∗∗ -0.2622∗∗∗

(0.0354) (0.0242) (0.0659) (0.0515)

Observations 310052 310067 71799 71799
F-Stat 214.003 211.994 202.661 202.661
Standard errors in parentheses
Observations are clustered at the level of High School Commuting Zones. The underclassmen columns show the growth in ability from the beginning of
ninth grade through the beginning of eleventh grade. The upperclassmen columns show the growth in ability from the beginning of 11th grade through
when the SAT is taken, which is typically around the beginning of the twelfth grade year.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

6.1.2 Separating Majors and Industries into Groups

In our model, workers in the labor market work for either a STEM-intensive industry or a non-STEM intensive industry. To
mimic this in the data, we divide industries into one of these two groups. We do this by ranking industries at the two-digit
NAICS code level in order of the share of their average “relevance” rskt for students graduating with STEM degrees. Then,

58This will demand having multiple measures of STEM and non-STEM ability at each grade level. Referring back to table 8, this presents a problem
for STEM in grade 11 and STEM and non-STEM in grade 12. For those grade levels, we are able to use ability measures from prior grade levels to
construct new ability measures as the fitted values from equation (21).
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Table 11: Estimates for the κ Terms related to the Probability of Passing all Classes

(1) (2)
Passing all

STEM Classes
Passing all

Non-STEM Classes

STEM Ability at Beg. of Period -0.0329 -0.2405∗

(0.1144) (0.1054)

Non-STEM Ability at Beg. of Period 0.6851∗∗∗ 0.8863∗∗∗

(0.1423) (0.1264)

Percent of Classes that are STEM -0.2418 0.9441∗∗∗

(0.1451) (0.1057)

Constant 0.3114∗∗ 0.0341
(0.1024) (0.0923)

Observations 71799 71799
Standard errors in parentheses
Observations are clustered at the level of High School Commuting Zones. These estimates are specifically for the likelihood of passing all classes as an
upperclassmen, and were estimated using the junior year of high school.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

the half with the highest relevance are grouped together as the “STEM-intensive” industry, and the rest are considered “Non-
STEM-intensive.”59 The remaining industries will be considered non-STEM intensive. The resulting groupings are shown
in table 33 of appendix C.3.

We likewise simplify the list of possible majors within our model, as maintaining a separate amount of labor for every
major at the level of 2-digit CIP codes would be computationally burdensome. Drawing from our motivating evidence in
section 4, many of the interesting dynamics we wish to capture are related to students’ choices either between STEM and
non-STEM majors, or to their choices within STEM majors. Based on this, we elect to group all non-STEM majors into a
single representative group for the model, and divide STEM majors into a smaller set of groups. In order to group majors
which have similar implications for the labor market after college, we group them with a kmeans algorithm based upon the
average relevance r̄mk of major m for industry k, where the average is taken across time. The four groups that we find are
shown in table 34 of appendix C.3. Among these, we further restrict the STEM major groups to those in which at least one
percent of students from a commuting zone major earn a degree in that area on average. This brings us to the STEM major
groups “Computer and Biological Sciences" and "Engineering."

6.1.3 Terms for Calculating Effective Labor Amounts

The τ terms in our model determine how STEM and non-STEM human capital translate into wages for STEM and non-STEM
workers. Specifically, the wages a worker of type m receives in the labor market is wimt = limtwmt , where limt = Aτs

m
is13Aτn

m
in13eτe

m
it .

This means that log wages are given by

log(wimt) = τ
s
m log(Ais13)+ τ

n
m log(Ain13)+ τ

e
m log(eit)+ log(wmt) (23)

When estimating this equation in the Texas Data, there is more than one commuting zone in the dataset, and so we addition-
ally include an ℓ location subscript on log(wmt). Then, we absorb the log(wmℓt) terms with a worker type-by-location-by-time
fixed effect νmℓt . These fixed effects will be saved and used in the section below.

For the ability terms, we can likely use almost the same method as was used in section 6.1.1, which was to replace the
ability terms with estimates of ability based upon ability measures, and then to use other ability measures as instruments.
First, we replace log(Ais13) and log(Ain13) with fitted values from (21) for what these abilities would be at the end of twelfth
grade based on their course-taking. We complete these fitted values log

(
Âis13

)
and log

(
Âin13

)
using one set of TAAS

standardized test scores taken at the beginning of eleventh grade. Then, equation (23) becomes

log(wimt) = τ
s
m log

(
Âis13

)
+ τ

n
m log

(
Âin13

)
+ τ

e
m log(eit)+ log(wmt) (24)

59Another option would be to rank industries based on their the share of wages that are paid in each industry to workers with college STEM degrees.
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or
log(wimt) = τ

s
m log(Ais13)+ τ

n
m log(Ain13)+ τ

e
m log(eit)+ log(wmt)− τ

s
mω

f
is − τ

n
mω

f
in (25)

where ω
f

ic is meant to represent the measurement error in the fitted value log
(

Âic13

)
.

To address this measurement error, we re-compute fitted values, which can be labeled them log
(

Ãis13

)
and log

(
Ãin13

)
,

using either SAT test scores or TAAS standardized test scores from grade 9.60 This will allow us to instrument for log
(

Âis13

)
and log

(
Âin13

)
with log

(
Ãis13

)
and log

(
Ãin13

)
, removing bias coming from measurement error. The estimates found by

completing this estimation are shown in table 12.

6.1.4 Identifying the ρ terms

Here, we use the saved these fixed effects from equation (23) above to identify the ρ terms from equation (9) as follows:

νmℓt+1 = ρ
w
m0 +ρ

w
m1SEℓt +ω

w
mt

= δmℓ+δmt +ρ
w
m1SEℓt +ω

w
mt (26)

The final equation is one that is estimated, where δmℓ and δmt are fixed effects, and we instrument with SEℓt using a shift-share
instrument similar to the one described in section 3.2 for the regression results of section 4.61 Including the fixed effects in
this way helps to make sure that ρw

m1 is just being identified off of local variation in the data, but they are not necessary for
the model. To map these estimates to the model, then, we set ρw

m0 = E [δmℓ+δmt ].62 The results of estimating equation (26)
are shown in table 13.

Equation (8) is more simple to estimate in the data, because both SEt+1 and SEt are directly observed. Here too, we use a
shift share instrument to identify the coefficient on SEt , and use the average of a location and a time fixed effect to pin down
the constant ρSE

0 . The results for the ρSE
1 term are shown in table 14.

60If both tests are available for a given student, we prefer the SAT test scores. Note that using the SAT scores to construct the instrument rather than
the original log

(
Âic13

)
avoids a potential identification concern. Specifically, it could be worried that measurement error in the SAT score is part of

what determines whether a student goes into college or certain majors within that college. This could occur, for example, because colleges use SAT
scores as part of the application process. In that case, if the SAT scores were used to construct log

(
Âic13

)
, there would be a concern of sample-selection

bias generating a correlation between the measurement error in the SAT score and the underlying latent ability. By using SAT scores to construct the
instrument instead, this concern about bias from SAT measurement error is removed.

61Specifically, the instrument that we use here is just like equation (6), but with rmk0 replaced by an indicator that takes a value of 1 whenever industry
k is STEM-intensive, and 0 otherwise. The separation of industries into STEM and non-STEM intensive groups was described in section 6.1.2.

62We normalize so that the "no college degree" m option satisfies ρw
m0 = 0.
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Table 12: τ terms by College Degree

(1) (2) (3) (4) (5) (6)
Computer and Bio. Sciences

STEM Degree
Nat. Resources and Conservation

STEM Degree
Math, Physical Sci., and Sci. Tech.

STEM Degree
Engineering

STEM Degree
Non-STEM

Degree
No College

Degree

Fitted STEM Ability after High School 0.4372∗∗∗ 0.3452 -0.2668∗ 0.6942∗∗∗ 0.4415∗∗∗ 0.3568∗∗∗

(0.0586) (0.2547) (0.1276) (0.0682) (0.0109) (0.0050)

Fitted Non-STEM Ability after High School -0.2993∗∗∗ -0.2376 0.1317 -0.4346∗∗∗ -0.2899∗∗∗ -0.2382∗∗∗

(0.0507) (0.2284) (0.1017) (0.0568) (0.0096) (0.0042)

log experience 1.4814∗∗∗ 2.3868∗ 0.0365 1.4600∗∗∗ 1.1970∗∗∗ 0.4643∗∗∗

(0.2710) (1.0975) (0.5076) (0.2455) (0.0889) (0.0730)

Constant 7.7320∗∗∗ 6.5913∗∗∗ 10.4900∗∗∗ 7.9710∗∗∗ 8.1905∗∗∗ 9.0435∗∗∗

(0.3603) (1.4388) (0.6716) (0.3288) (0.1168) (0.0951)

Observations 26095 1921 8161 27428 319030 781321
Number of Students 4484.000 316.000 1334.000 4293.000 49532.000 128481.000
F-Stat 1604.856 51.021 455.527 1258.458 23052.566 76025.670

Standard errors in parentheses
All regressions include fixed effects for each combination of college degree type, high school commuting zone, and year.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 13: ρw
1m terms by College Degree

(1) (2) (3) (4) (5) (6)
Computer and Bio. Sciences

STEM Degree
Nat. Resources and Conservation

STEM Degree
Math, Physical Sci., and Sci. Tech.

STEM Degree
Engineering

STEM Degree
Non-STEM

Degree
No College

Degree

Share of Emp. in STEM, 2 Years Ago 5.6988∗∗∗ 4.8858 4.5674 3.8258 2.2840∗∗∗ 1.2904∗∗∗

(1.2916) (3.6678) (5.1879) (2.5514) (0.5929) (0.3631)

Observations 953 511 755 908 1103 1108
Number of Students 4484.000 316.000 1334.000 4293.000 49532.000 128481.000
F-Stat 118.333 46.078 16.496 25.790 89.883 109.274

Standard errors in parentheses
All regressions include separate fixed effects for the high school commuting zone and the year. 2016 is set as the base year for the year fixed effects.
Regressions are weighted by the number of student-and-year combinations that were used to estimate the dependent variable, which is a fixed effect from the corresponding regression shown in table 12.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 14: ρSE
1 estimation

(1)
SE share

Share of Emp. in STEM, 2 Years Ago 0.8240∗∗∗

(0.0710)

Observations 1407
F-Stat 95.698
St. Dev. of Residual 0.014

Standard errors in parentheses
All regressions include separate fixed effects for the high school commuting
zone and the year. 2016 is set as the base year for the year fixed effects.
Regressions are weighted by the number of students who graduated high
school from a given commuting zone in 1998.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

6.1.5 Other Parameters Identified Outside the Model

The share of classes that are “STEM” in the non-STEM track is set to be 23%. This is the approximate share of math and
science credits required to graduate in Texas under both Foundation graduation standard with one endorsement and the prior
MHSP standard.63 Then, we will use the model to estimate the share of classes that are STEM in the STEM-intensive track.
With the measurement terms for STEM and Non-STEM latent ability estimated from section 6.1.1 above, we are able to
estimate the initial average latent STEM and Non-STEM ability in 11th grade, as well as the variances and covariance of
those abilities. These are used for generating the simulated sample of students in the estimation below. The average share of
classes that are “STEM” within 11th grade is also taken from the data.

We will use an estimate of the time preference parameter β = .95. The standard deviation of the ωSE
t term is taken from

the variance of the residual when estimating the ρSE terms, and is shown in table 14.64 For the rmkt terms within the model,
we prepare a version of these terms within the data in which the industry k is aggregated to the STEM and Non-STEM
industry level, and then the average is taken across time. In this way, our model estimation abstracts away from changes in
the relevance variable rmkt over time. These aggregated rmkt terms and the STEM employment share SEt together pin down
the movement in relevant employment REmt within the model.

6.2 Parameters Identified Inside the Model

The parameters left to be identified are the δ terms that shape a student’s utility over time and the share of classes that are
STEM in the STEM-intensive high school track. We estimate these using simulated method of moments, using moments
like those described in section 4. Each period in the model represents two years, and so we only estimate the moments found
by taking the two, four, six, eight and ten-year differences. For the high school moments, since both STEM and non-STEM
classes are present in the model, we directly use results shown in tables 1 and 3.

For college moments like those presented in tables 4 through 6, we cannot match these in our model as directly because
our model only has three degree category groupings, and those tables were estimated using the full set of degree categories
at the two digit CIP code level. To resolve this, we aggregate to the college major groupings that we will be using within the
model, and re-estimate the moments from college that we will be using. These estimates broadly show the same patterns as
we presented in section 4, and are included for reference in appendix section C.4.

In addition to the high school and college moments described above, we also include as moments the shares of high
school graduates who major in each of the three degree groupings. We include these shares taken both at the stage of
declaring a first major and at the stage of graduating with final majors. The moments included in table 7 are not included as
moments in the regression, because the influence of employment shares on wages through the lens of the model has already
been pinned down by the ρw

1 estimates shown in table 13.
The central goal of the model is to understand how students react to the local labor market over time, and so the most

important δ terms are those governing how students value SEt realizations while in school and wages once in the labor

63With one endorsement, the Foundation high school program requires 6 credits to be math or science out of 26 total credits (this is 23.1%). The
MHSP requires 5 math or science credits out of a total 22 credits (this is 22.7%).

64Note that this regression included both a location fixed effect and a time fixed effect. Thus, Texas-wide changes would be absorbed in the time
fixed effect, and so the residuals used here are more specific to commuting-zone-level variation across time.
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market. In appendix section B.2, We argue that these terms are effectively pinned down by the regression moments described
above .

To arrive at our weighting matrix for simulated method of moments, we first create a variance-covariance matrix for our
moments by bootstrapping from the data.65 This bootstrapping is done at the level of commuting zones, and we take 500
separate bootstrapped samples. The theoretically optimal weighting matrix is the inverse of the variance-covariance matrix,
but we diverge from this matrix in two ways for our case: First, since the shares of students declaring certain majors as their
first and final choices are unconditional averages, these moments are estimated far more precisely than the other moments
that we are using. If we were to use the inverse variance-covariance matrix directly, then, a highly disproportionate weight
would be placed on these moments, even though they are not as central to the patterns we are hoping to explain as the other
moments. To fix this, before taking the matrix inverse we set the covariance between these shares and the other moments to
0, and raise the variances of these moments to a constant 1e−4.66

Second, although we have 40 moments dedicated to the way college majors respond to employment shares and only 5
describing how high school class selections respond, we consider the response of high school course-taking to employment
conditions equally if not more important to our research question. To address this imbalance in the moments, we multiply
the rows and columns of the weighting matrix that correspond to the high school course-taking moments by 8.67 In doing
so, we multiply the differences between these simulated moments and their data counterparts by 8, and hopefully correct for
the disproportionate number of moments included for each group.

The final estimation process is over-identified, with 61 moments and only 19 parameters to be estimated.

7 Structural Model Results

The parameter estimates and their standard errors are shown in table 15. The final estimation process was quite over-
identified, with 61 moments and only 19 parameters to be estimated. Still, the model did a good job of matching these
moments. For the “major share” moments, this is shown in table 16. The fit of the remaining moments is shown graphically
in figures 4 and 5, where the confidence intervals are created based on the standard errors from the bootstrapped variance-
covariance matrix. Tables with these simulated and data moments can be found in appendix section C.5.

For the high school class share moments presented in figure 4, the model does a good job of matching both the level
and the trend. This is good, since the trend in coefficient estimates from table 1 was a key motivation for estimating a
structural model. Within the model, this trend occurs for two reasons. First, students make their decisions between academic
“tracks” for period two of the model while still in period one, before the STEM employment share in the second period has
been realized. This means that the STEM employment share in period one has a non-contemporaneous effect on the course
outcomes in period 2. Second, the STEM employment share in one period covaries positively with the STEM employment
share in the next because they are both generated by the same AR-1 process. Equation (34) in appendix section B.2 shows
how these two factors come together to produce the observed trend in coefficient estimates.

For the other moments, the model generally does a good job of matching the approximate levels of the coefficients, but
replicates the trends in those coefficients with varying degrees of effectiveness. The STEM class passing moments in figure
4, for example, effectively match that the change in relevant employment has a negative coefficient, but the trend seems to be
inverted. Figure 5 displays the moments related to college. One more noticeable failing of the model there is that it produces
small positive coefficients in the first major regressions, but the data suggests that these should be negative. This will be a
potential area for improvement in future drafts of this paper.

7.1 Counterfactual Estimation

With model estimates in hand, we turn to estimating a counterfactual. We are interested in testing how significant the
responses that students make while in high school are for shaping their overall response to the labor market in college and
beyond.Specifically, we will run a counterfactual in which we shut down students’ abilities to choose a STEM-intensive track
for their senior year STEM course share in high school. Instead, all students will be forced to take the non-STEM track. This
will be informative about the extent to which the observed responsiveness of Texas students to the labor market is coming

65In section 12.24 of Hansen (2021), Bruce Hansen discourages against using bootstrapped standard error estimates for two-stage least squares. In
the future, we can look into alternative methods of preparing this variance-covariance matrix.

66Before making this correction, the highest variance for these moments was 5.72e−5 and the minimum was 3.69e−7.
67This is done after the inverse of the variance-covariance matrix is taken, whereas the adjustment above to the shares was made beforehand. Since

both the rows and columns are being multiplied by eight, the weights along the diagonal for the high school classes are effectively multiplied by 64.
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Table 15: Parameter Estimates

High School Parameters

Parameter Estimate

δ hs
0,c=s -1.601

(0.144)
δ hs

1 2.184
(0.129)

Sc=s 0.900
(0.002)

Transferring Parameters

Parameter Estimate

δ
trans f er
t=3,c=n 0.041

(0.042)
δ

trans f er
t=3,c=s 0.041

(0.733)
δ

trans f er
t=4,c=n 1.870

(1.292)
δ

trans f er
t=4,c=s 0.114

(4.014)

College Parameters

Parameter Estimate

δ col
0,m=1 -6.182

(0.418)
δ col

0,m=2 -17.896
(0.896)

δ col
0,m=3 -17.887

(2.716)
δ col

1,c=n 2.512
(0.245)

δ col
1,c=s 4.045

(0.308)
δ col

2,c=n 0.092
(2.577)

δ col
2,c=s 1.389

(3.888)

Labor Market Parameters

Parameter Estimate

δ lab
0,m=1 -0.044

(0.143)
δ lab

0,m=2 -0.038
(0.187)

δ lab
0,m=3 -0.093

(0.592)
δ lab

1 0.097
(0.183)

δ dropout 0.247
(2.606)

Table 16: Fit of “Major Share” Moments

Major % First Major % Graduation Major
Model Data Model Data

Non-STEM Degree 30.583 30.494 21.849 21.785
STEM, Computer and Bio Sciences 2.541 2.653 0.961 1.731
STEM, Engineering 2.558 2.225 0.961 1.689
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Figure 4: Fit of High School Class Moments

(a) HS Class Shares

(b) Non-STEM HS Passing Rates (c) STEM HS Passing Rates
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Figure 5: Fit Of College Moments

(a) Non-STEM First Major Share for All HS Gradu-
ates (b) STEM First Major Share for All HS Graduates

(c) Non-STEM First Major Share for College-Goers (d) STEM First Major Share for College-Goers

(e) Non-STEM Graduation Share, Effect of Employ-
ment Share at time of HS Graduation

(f) STEM Graduation Share, Effect of Employment
Share at time of HS Graduation

(g) Non-STEM Graduation Share, Effect of Employ-
ment Share at time of College Graduation

(h) STEM Graduation Share, Effect of Employment
Share at time of College Graduation
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from the flexibility that they have to adjust their course-taking behavior while in their senior year of high school. If it is
found that this flexibility has substantial positive effects, that will underline its importance in the Texas education system,
and encourage greater flexibility to be adopted in any educational systems that currently have less flexibility than Texas.

With the counterfactual limitation to senior-year course taking in place, we then simulate a large shock to the local
STEM employment share. Specifically, we will hold the STEM employment value at the steady state value, then apply a
two-standard-deviation shock. After the shock, we allow STEM employment share to slowly adjust back to the steady state
level according to to the AR-1 process in equation (8).68 Panel (a) of figure 6 shows this shock to the STEM employment
share. As can be seen, the shock is very persistent—the STEM employment share remains over a percentage point higher
five periods after the shock, which represents 10 years of real time.

Figure 6: A Shock to the STEM Employment Share, Removing the Option of a STEM-Intensive Track in the Senior Year

(a) STEM employment share (b) Senior Year STEM Class Share (c) Share of High School Graduates who De-
clare an Initial Major in STEM

(d) Share of High School Graduates who
Graduate College in STEM

(e) Average Period 5 Earnings (f) Average Present Value of Lifetime Earn-
ings

Panel (b) of figure 6 shows what has been enforced for this counterfactual, that the average share of senior year classes
taken in STEM is lowered by about 20 percentage points prior to the shock, and is unable to react even once the shock
has taken place. The next two panels are more interesting because they show the result of that change on student’s future
outcomes. Panel (c) shows that the share of students declaring a first major in STEM drops by about .21 percentage points
prior to the shock, which is equivalent to a 4.20 percent reduction in the number of students declaring first majors in STEM.
This loss in initial STEM majors translates into a loss in STEM college graduates, as shown in panel (d). There, share of
all high school graduates who major in STEM declines by about .08 percentage points prior to the shock, signaling a 4.42
percent decline in the number of STEM graduates.

Panel (e) plots the response of student’s earnings in period 5, which is the first period of the model in which all students
have entered the labor force. The observed loss in these “initial” labor market earnings, down about 1.63 percent prior to the
shock, reflects two channels in the model: students changing their final degrees, and students having reduced STEM human
capital from missing out on STEM classes in their senior year. Panel (f) presents the corresponding changes in the present
value of lifetime earnings. Each point in that graph represents the present value of lifetime earnings for a student who enters
the model as a freshman in that period. As such, lifetime wages are elevated prior to the shock because the students born in
those time periods will live through the STEM employment share shock. In the counterfactual, this life time present value of
wages drops by just over two percent prior to the shock.

Note that these graphs are describing movements in average wages across all students, the majority of whom did not
take the STEM-intensive senior course load even in the baseline case. Their wages remained fixed in the counterfactual, so

68More specifically, we are apply a shock equal to two standard deviations of ωSE
t . After the shock, we hold future ωSE

t values at 0 to allow the
STEM employment share to adjust back down to the steady state level.
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the observed differences are being driven by the students who took the STEM intensive course share. Prior to the shock,
the share of students taking this STEM-intensive course load in their senior year was 31.19%. If we condition the earnings
results on being a student who would have taken the STEM-intensive course load in their senior year, the differences are
more dramatic. This is shown in figure 11 of appendix section C.6. Prior to the shock, we find that students who would
have taken the STEM-intensive senior year course share would lose about 4.96 percent of their period 5 income, and that
the present value of the lifetime income is reduced by around 6.72 percent. That figure also shows that these results are not
being driven by students of high or low ability—both the highest and lowest terciles of initial STEM ability have remarkably
similar losses in the counterfactual.69

All of the disparities in student responses that figure 6 shows prior to the shock persist afterword as well. However,
there are subtle differences between the baseline and the counterfactual in the degree to which students respond to the
employment share shock. To make this more clear, figure 7 plots the difference between the “baseline” and “counterfactual”
lines from figure 6. The drop following the shock in each panel reflects the decreased responsiveness of these variables to
the employment share shock when high school seniors cannot choose a STEM-intensive course load.

Figure 7: Change in Student Responsiveness when the Option of the STEM-Intensive Track is Removed.

(a) Share of High School Graduates who Declare an Initial
Major in STEM

(b) Share of High School Graduates who Graduate College in
STEM

(c) Average Period 5 Earnings (d) Average Present Value of Lifetime Earnings

For the share of high school graduates declaring an initial major in STEM, the responsiveness declines by up to around
.008 percentage points. In other words, during employment shocks, the decline in student responsiveness when they cannot
alter their senior class shares can further reduce initial STEM major shares by up to another 3.5 percent of the pre-shock
decline. The effect is similar for graduation majors. There, the response in the share of students graduating in STEM drops
by up to around .004 percentage points, or 5.1 percent of the pre-shock decline. For income, the response of period 5 earnings
drops by up to around .06 percent, which is about 1/26 of the original pre-shock effect. Finally, the response of the present
value of lifetime earnings drops by .05 percent, or about 1/47 of the original effect. In all of these ways, removing student’s
ability to choose STEM-Intensive coursework reduces the degree to which they are able to adjust to a shock in the labor
market. These reductions in responsiveness are small in absolute terms, but non-negligible when compared to the size of the

69High and low ability students show fairly similar responses regardless of whether we condition on them having taken STEM-intensive track in their
senior year. This is shown in figure 12 of appendix C.6.
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pre-shock effects that were measured.
With all of the results from this counterfactual, it is important to remember that the only thing being changed is a student’s

course load during a single year of high school, and that effectively a change is only being made for the students that would
have taken the STEM-intensive course load if they had the option—just 31.19 percent of students prior to the shock. Even
among those students, the counterfactual did not entail a total removal of STEM classes, but rather a reduction down to 23
percent of their classes being in STEM. As shown above, this relatively small change has lasting implications for the share of
students pursuing STEM degrees, labor market earnings, and the responsiveness of these two things to STEM employment
shocks.

8 Conclusion

In this paper, we looked at the effects of local labor markets on the academic subjects students pursue in school. We
found that a student’s high school labor market has a large influence on their course taking while in high school, as well as
likelihood that students will pass their STEM classes. Importantly, we found evidence from these regressions that lagged
relevant employment shares can affect a student’s present decisions.

This motivated a structural model in which students were able to react to STEM employment shares each period, and
the decisions that they made in one period affected their decisions in the next. Our results from that model underlined the
importance of allowing students flexibility in choosing their senior-year coursework. Specifically, we find that removing the
option of a STEM-intensive course load lowers the number of students who graduate college with STEM degrees by about
4.4 percent, and decreases a measure of early career earnings by about 1.6 percent. As would be expected, the declines in
earnings are much more pronounced when we look only at students who would have pursued the STEM-Intensive senior-
year track if they had the chance. Further, the growth of student STEM degree shares and eventual wages after a STEM
employment share shock is diminished in the counterfactual, suggesting that the ability to choose senior year course loads
has important effects on the overall responsiveness of students to the labor market.

From a policy perspective, our work underlines the importance of providing students with meaningful choices between
career-relevant courses while in high school. Doing so can help them to better respond to changes in their local labor markets,
increasing their abilities to be successful in college and earn higher wages upon entry into the labor force. In light of these
results, it is interesting that we found no evidence of school systems changing their course offerings in response to local
economic conditions. If they were to begin doing so, these efforts may compliment the existing responses of students, so
that more STEM courses are available to students precisely when local labor market conditions make taking those courses
more attractive. We view this as a promising avenue for future policy work and research.
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Appendix

A Preparing the Data

Each college in the TSP data is identified using a FICE code. To link these colleges to specific commuting zones, we first
used the Master College Code list from WebAdMIT by Liaison to match each FICE code to an IPEDs Code. Then, we used
IPEDS directory data to get the county FIPS code for each college.70 Some remaining FIPS County codes were also filled in
manually by looking at the addresses of the colleges.71 To link FIPS county codes to specific commuting zones and MSAs,
we used a crosswalk provided by the NBER (NBER, 2022).

When grouping majors at the two-digit CIP code level, we combine certain two-digit CIP categories that are highly
similar. Specifically, we combine “History” (54) and “Social Sciences” (45) under the header “Social Sciences.” Addition-
ally, we combine “Theology and Religious Vocations” (39) and “Philosophy and Religious Studies” (38) under the header
“Philosophy and Religious Studies.” There are other two digit CIP codes that we exclude from the analysis because they
are not vocational or occupational in the private sector: “Undecided” (99), “Military Science, Leadership and Operational
Art” (28), “Military Technologies and Applied Sciences” (29), “Basic Skills and Developmental/Remedial Education” (32),
“Citizenship Activities” (33), “Health-Related Knowledge and Skills” (34), “Interpersonal and Social Skills” (35), “Leisure
and Recreational Activities” (36), and “Personal Awareness and Self-Improvement” (37).

We also take additional steps to prepare the CBP data. First, we exclude the two-digit NAICS codes “00”, “95”, and
“99.” Then, we combine certain two digit CIP codes into sectors as the Census does: Codes 31-33 are combined as “Manu-
facturing,” 44-45 are combined as “Retail Trade,” and 48-49 are combined as “Transportation and Warehousing.”

The CBP suppresses employment counts or annual payrolls for certain industry, county, and year combinations in order
to protect respondent confidentiality. Up until 2017, however, the approximate value of employment counts can be deduced
from other variables.72 One option for how to do this uses the EMPFLAG variable, which gives the range that total employ-
ment falls into. An EMPFLAG value of “B,” for example, tells us that total employment is somewhere from the lower bound
of 20 to the upper bound of 99. A second option is to use the number of establishments that fall within certain employment
ranges. If there is one establishment in the 10-19 employee range (variable N10_19) and two in the 20-49 employee range
(variable N20_49), then we can construct a lower bound for total employment of 1*10+2*20=50 and an upper bound for
employment of 1*19+2*49=117. To estimate the approximate value of total employment, we begin by finding the maximum
lower bound and minimum upper bound from these two methods. Then, we take the average of those bounds and use it as
the approximate employment level.

Unfortunately, these methods are not available for finding approximate annual payroll levels. For our measure of average
relevant wages RWmℓt , then, we must exclude these suppressed industry, county, and year combinations. More details on this
are provided in section A.5 below.

A.1 Additional Motivational Figures

In section 2, we showed the relationship between movement in a STEM Industry (Health Care/Social Assistance) and the
share of people declaring their first major in STEM for different commuting zones in Texas. Here, we will provide a similar
graph showing this relationship for Non-STEM degrees using “Retail Trade” as a Non-STEM industry. Health Care/Social
Assistance and Retail Trade were the two-digit NAICS codes with the highest employment shares in Texas as of 2005. Figure
8 shows the relationship between Retail Trade employment shares in Dallas and non-STEM first major shares, and figure 9
shows this relationship for a number of other commuting zones in Texas.

As can be seen, while there is some suggestive evidence of a relationship here, it is certainly not as strong as the
relationships for STEM shown in figures 1 and 2. This same pattern will be present in our other main results from section 4

70The IPEDS directory data started including counties in 2009, but before that they recorded zip codes. If a school had the same zip code before 2009
as they had in 2009, we assume that they did not move, and that their county matches the county fips code given in 2009. For schools that were still
missing FIPS county codes before 2009, we used a crosswalk file between zip codes and county FIPS codes from the Housing and Urban Development
(HUD) and the United States Postal Service (USPS).

71One college that we did not match to a county was Texas State Technical College-West Texas, because they have campuses in Nolan County, Taylor
Counter, Stephens County, and Brown County. This means that we cannot identify the FIPS county code for students going to that college, and so we
exclude them from regressions that use the college location.

72Starting in 2017, a industry, county, and year combination is entirely removed from the publication if it contains two or fewer establishments. For
these years we cannot differentiate these suppressed cases from industry, county, and year combinations where there is no employment. The EMPFLAG
variable was removed in 2018.
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Figure 8: Retail Trade Employment Shares and non-STEM College Major Shares in Dallas

Figure 9: Retail Trade and non-STEM Major Shares Across Texas
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as well—the response of STEM majors to employment conditions will consistently be more significant than the response of
non-STEM majors.

A.2 Descriptive Statistics

Table 17 displays the mean values of various characteristics for the students in our sample. For example, among students
who enrolled in college, 46.3% of them were male. Here, “no college” means that the student did not enroll in any public
university or community college in Texas, and “Enrolled in college” means that they did enroll in one of those options. The
standard errors are given in parenthesis.

Table 17: Descriptive Statistics

Total No College Enrolled in College

Male 0.494 0.543 0.463
(0.500) (0.498) (0.499)

Native American 0.00324 0.00356 0.00303
(0.0568) (0.0596) (0.0550)

Asian 0.0389 0.0312 0.0438
(0.193) (0.174) (0.205)

Black 0.128 0.134 0.124
(0.334) (0.340) (0.330)

Hispanic 0.416 0.474 0.379
(0.493) (0.499) (0.485)

White 0.408 0.352 0.443
(0.491) (0.478) (0.497)

Two or More Races 0.00599 0.00626 0.00582
(0.0771) (0.0789) (0.0760)

Bilingual 0.000670 0.000559 0.000740
(0.0259) (0.0236) (0.0272)

Economic Disadvantage 0.437 0.534 0.375
(0.496) (0.499) (0.484)

ESL 0.0480 0.0865 0.0238
(0.214) (0.281) (0.152)

LEP 0.0706 0.121 0.0392
(0.256) (0.326) (0.194)

At-Risk 0.362 0.479 0.289
(0.481) (0.500) (0.453)

Gifted 0.126 0.0904 0.149
(0.332) (0.287) (0.356)

First Major is in STEM 0.0671 0 0.109
(0.250) (0) (0.312)

Observations 4,744,298 1,830,741 2,913,557

Table 17 shows several of the patterns that might be expected for college attendance. Around half of the students who
do not attend one of our college options were “at-risk” of dropping out of high school, whereas only 28.9% of students who
enrolled in college were “at-risk.” Having an economic disadvantage, English as a second language (ESL), or limited English
proficiency (LEP) are associated with similar gaps.
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A.3 Measuring Relevant Employment

REmℓt , defined in (1), is our measure of the share of employment in location ℓ and time t that is relevant for major m. To
construct an instrument for this variable, we make use of the fact that the share of local employment that is in industry
k, skℓt can be expressed in terms of the share of employment in that industry in the base year skℓ0 and the growth rates of
employment in each industry gkℓt . Specifically,

skℓt =
(# workers employed in k)ℓt
(# workers employed)ℓt

=
(# workers employed in k)ℓ0
(# workers employed)ℓ0

(# workers employed in k)ℓt
(# workers employed)ℓt

(# workers employed)ℓ0
(# workers employed in k)ℓ0

=
skℓ0gkℓt

(# workers employed)ℓt
(# workers employed)ℓ0

=
skℓ0gkℓt

(# workers employed)ℓt
(# workers employed)ℓ0

=
skℓ0gkℓt

∑
k′

(# workers employed)k′ℓt
(# workers employed)ℓ0

=
skℓ0gkℓt

∑
k′

sk′ℓ0gk′ℓt

This is how we reached equation (2).
Literally, this measure is the weighted average share of jobs for new graduates going to those with major m, where the

weights are the size of each industry k. When all local employment is in industries where 100% of the jobs go to graduates
with major m, REmℓt is equal to 1. To give a slightly more complicated example, if half of local employment is in an
industry where 50% of the jobs go to graduates with major m, and the other industries do not hire any new graduates, then
REmℓt = (.5)(.5) = .25.

If the number of jobs going to new graduates in each industry is proportional to the size of that industry, then REmℓt is
exactly equal to the share of jobs for new graduates that are going to students of major m. To see this, say that the fraction of
workers that are new graduates is α in all industries. Then,

REmℓt =
K

∑
k=1

rmktskℓt

=
K

∑
k=1

(
(# new graduates in major m and industry k)t

(# new graduates in industry k)t

)(
(# workers employed in k)ℓt
(# workers employed)ℓt

)

=
K

∑
k=1

(
(# new graduates in major m and industry k)t

(# new graduates in industry k)t

)(
α (# workers employed in k)ℓt

∑
K
k′=1 α

(
# workers employed in k′

)
ℓt

)

=
K

∑
k=1

(
(# new graduates in major m and industry k)t

(# new graduates in industry k)t

)(
(# new graduates employed in k)ℓt

∑
K
k′=1

(
# new graduates employed in k′

)
ℓt

)
.

Next, using the assumption that the share of new graduates in industry k that have major m does not vary across locations,
we can say that

REmℓt =
K

∑
k=1

(
(# new graduates in major m and industry k)ℓt

(# new graduates in industry k)ℓt

)(
(# new graduates employed in k)ℓt

∑
K
k′=1

(
# new graduates employed in k′

)
ℓt

)

=
K

∑
k=1

(
(# new graduates in major m and industry k)ℓt

∑
K
k′=1

(
# new graduates employed in k′

)
ℓt

)

=
K

∑
k=1

(
(# new graduates in major m and industry k)ℓt

(# new graduates that are employed)ℓt

)

=
(# new graduates in major m that are employed)ℓt

(# new graduates that are employed)ℓt
.
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This is the share of jobs for new graduates that are going to students of major m.

A.4 Other Measures for Relevant Employment

To our knowledge, we are the first paper to measure the relevance of industries to certain degrees using data that is specific to
new college graduates. As described in the main text above, this is important because the types of jobs people with a given
major take may change as they gain experience in the labor force.

A second contribution is that we allow this relevance to change over time. The only other paper we know of that does
this is Conzelmann et al. (2023). Their measure of labor demand is the number of new online job ads that are relevant for
a given major and posted in the geographic areas where alumni of a student’s college live. Since only about half of job ads
list a major, the authors are required to impute the majors that are likely relevant for job ads based on information from the
ads which do list a major. It is a strong assumption that job ads which do not list majors are actually associated with certain
majors in the same way as the jobs which do list majors. As the authors suggest, it could be possible that the absence of
listed majors indicates that any college major could be potentially suitable. In support of concerns like these, four of the
authors find that the job ads which offer majors are different than those which do not along observable characteristics, and
note that the observable characteristics can only explain three quarters of the variation in which job ads list a major (Hemelt
et al., 2021).

In our paper, we use the more direct measure of the share of new graduates in an industry that have each degree. Even if
the job ad data could perfectly record the majors that an industry desires to hire for a certain job, looking directly at who is
hired has the advantage of reflecting true matches. For example, even if a particular business listed “English” as a possible
major, if they only higher finance majors than the true “relevance” of that job for English majors would be different than the
job ad suggested.

Other papers have used different methods to identify the jobs in the labor market that are relevant for specific degrees.
These methods generally require that this relevance is constant over time and the number of years a worker has spent in the
labor force. One common method is to use a crosswalk between CIP college major codes and occupation codes that was
prepared by the National Center for Education Statistics and the Bureau of Labor Statistics (NCES/BLS, 2011).73 Their
crosswalk links a single CIP code to multiple possible occupations, and so this also requires some way of deciding how
important each of those possible occupations should be for a specific major.

Our method of finding the “relevance” of an industry to a degree looks at the share of new graduates in an industry
that have each degree. Long et al. (2015) have a similar approach, which is use the ACS to find share of people with a
degree that work in a particular occupation. Since the ACS only recorded majors for a limited time frame, they are required
to assume that the mapping between occupations and degrees is constant over time. Freeman and Hirsch (2008) used a
different method, which was to link the “knowledge areas” of occupations described in O*Net to specific degrees. Then,
they linked O*Net to specific occupations, and asked if people major in a degree more often when the occupations that
require the related knowledge areas account for a large share of employment.

A.5 Measuring Relevant Wages

In this section, we describe how we measure relevant wages RWmℓt . Our goal is to calculate the expected average industry
wage for a worker with major m, conditional on that worker being employed in one of the two digit NAICS code industries
k in our sample. This can be calculated as the sum across industries k of the average wage in industry k times the probability
that an employed worker with major m would be working in industry k:

RWmℓt =
K

∑
k=1

P
{

Worker gets a job in k | Worker Gets a Job & has Major m
}

mℓt w̄kℓt

Here, w̄kℓt is the average wage in industry k, location ℓ, and year t. We calculate it by dividing the annual payroll from this
industry by the number of workers employed in that industry in the CBP data. The CBP does sometimes suppress wage
information for a given industry, location, and year combination. We will deal with this below.

73This method was used by Grosz (2022) and Bardhan et al. (2013), and also by Long et al. (2015) in a robustness check.
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In order to measure RWmℓt , we perform the following steps:

RWmℓt =
K

∑
k=1

(
(# with major m who get a job in k)mℓt
(# with major m who get a job)mℓt

)
w̄kℓt

=
K

∑
k=1

 (# with major m who get a job in k)mℓt
(total # of jobs)ℓt

(# with major m who get a job)mℓt
(total # of jobs)ℓt

 w̄kℓt

=
K

∑
k=1


(# with major m who get a job in k)mℓt

(total # of jobs)ℓt
K
∑

k′=1

(# with major m who get a job in k′)mℓt
(total # of jobs)ℓt

 w̄kℓt

=
K

∑
k=1


(# with major m who get a job in k)mℓt

(total # of jobs in k)ℓt

(total # of jobs in k)ℓt
(total # of jobs)ℓt

K
∑

k′=1

(# with major m who get a job in k′)mℓt

(total # of jobs in k′)
ℓt

(total # of jobs in k′)
ℓt

(total # of jobs)ℓt

 w̄kℓt

This expression makes use of two shares. The first one, (# with major m who get a job in k)mℓt
(total # of jobs in k)ℓt

, is the way that we measure the
relevance of industry k to graduates with major m. As with the calculation for relevant employment in section 3.1, we will
make the assumption that this relevance does not vary geographically, and measure it using the share for all students in Texas
rmkt .

The second share, (total # of jobs in k)ℓt
(total # of jobs)ℓt

, we will measure with using the share skℓt of employment in location ℓ and year t
that is industry k. This is not an exact measurement, because there is a difference between (total # of jobs in k)ℓt as we are
using it in the relevance share rmkt and in the employment share skℓt . The number of jobs in the denominator of rmkt is the
number of jobs in industry k going to new college graduates, and the number of jobs in the numerator of skℓt is the number
of workers employed in industry k. Similar to the case of relevant employment described in appendix section A.3 above, this
approximation is exactly correct under the simplification that the number of jobs going to new graduates in an industry is
proportional to the total number of jobs in that industry. Assume that this is true, and that a constant share α of jobs in each
industry k go to new graduates. Then,

(total # of jobs in k)ℓt
(total # of jobs)ℓt

=
α (total # employed in k)ℓt
K
∑

k=1
α (total # of jobs in k)ℓt

=
(total # employed in k)ℓt
(total # employed)ℓt

= skℓt

With these two shares replaced, relevant employment can be written more simply as

RWmℓt =
K

∑
k=1

 rmktskℓt
K
∑

k′=1
rmk′tsk′ℓt

 w̄kℓt

We make one adjustment to this measure to account for the fact that the CBP suppresses payroll information in some cases
to protect respondent confidentiality. In those cases, the average wage w̄kℓt is missing for the associated industry, location,
and year combination. To get around this issue, we exclude those industries from the calculation of RWmℓt as follows:

RWmℓt =
K

∑
k=1

 rmktskℓt1{wage data is present}kℓt
K
∑

k′=1
rmk′tsk′ℓt1{wage data is present}k′ℓt

 w̄kℓt

A.6 Separating Two-Digit CIP Codes into “STEM” and “Non-STEM”

In our regressions related to the majors that students select in college, we group majors into categories based on their two-
digit CIP codes. However, the DHS’s definition of STEM degrees does not define degrees to be STEM at the two-digit
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CIP level, and so when we are presenting results separately by “STEM” and “Non-STEM” degrees we need to make some
decisions on which two-digit CIP codes to mark as STEM. Fortunately, the DHS’s STEM definitions can be captured quite
accurately at the two-digit CIP level.

Figure 10: Comparing the DHS definition of STEM with a Definition Based on Two-Digit CIP Codes

In figure 10, each of the bars is associated with different grouping of majors at the two-digit CIP code level. The height
of these bars shows the percentage of first majors declared in this two-digit category which were classified as STEM by
the DHS.74 We will define the black bars as representing “STEM” two-digit CIP codes. As can be seen, there is a clear
difference between these bars and the bars from any other major category. Where over 80% of first majors declared in each
of the black bar categories are considered STEM by the DHS, none of the other first major categories had even 40% of their
declared majors designated as STEM. Further, the black bars together account for 90.51% of the first majors identified as
STEM by the DHS.

B Additional Information on the Regressions

B.1 Evidence that Employment shares have Lagged Effects

The upward trend in the coefficients from table 1 gives evidence against a model in which the relevant employment share
only has effects on contemporaneous student decisions. Specifically, consider the model

Ymℓt = γmℓ+β1REmℓt + εmℓt (27)

where γmℓ is a major-location fixed effect. Since we estimate our equation in differences, this would become

∆dYmℓt = β1∆dREmℓt +∆dεmℓt (28)

One implication of this equation that our estimate for β1 should not depend on the number of years d that we use to take the
difference. Thus, our result of different coefficients for different values of d would be unexpected if this were the true data
generating process. In the future, we intend to use a statistical test to more formally check whether we can reject the null
hypothesis that the coefficients shown in the first seven lags of table 1 are all equal.

74If a student declared two separate first majors in “Agriculture,” and only one of them was categorized by the DHS as STEM, we counted this as a
single first major in the “Agriculture” category that was categorized as STEM.
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By contrast, the trend shown in table 1 and the fact that our coefficient estimates eventually level off as d increases are
both more consistent with a general distributed lag model. Consider the model

Ymℓt = γmℓ+
J

∑
j=0

β jREmℓt− j + εmℓt (29)

in which all of the lags of the relevant employment share up to J are allowed to have separate effects on the outcomes Ymℓt .
Differencing this model results in the expression

∆dYmℓt =
J

∑
j=0

β j∆dREmℓt− j +∆dεmℓt

= β0∆dREmℓt +
J

∑
j=1

β j∆dREmℓt− j +∆dεmℓt (30)

In our estimation results from section 4, we omit the
J
∑
j=1

β j∆dREmℓt− j terms above. If this distributed lag model is true, that

creates omitted variable bias as follows:

Cov(∆dYmℓt , ∆dREmℓt)

Var(∆dREmℓt)
=

Cov

(
β0∆dREmℓt +

J
∑
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β j∆dREmℓt− j +∆dεmℓt , ∆dREmℓt

)
Var(∆dREmℓt)

= β0 +

Cov

(
J
∑
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β j∆dREmℓt− j , ∆dREmℓt

)
Var(∆dREmℓt)

= β0 +

J
∑
j=1

β j

(
Cov

(
REmℓt− j , REmℓt

)
+Cov

(
REmℓt− j−d , REmℓt−d

))
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−

J
∑
j=1

β j

(
Cov

(
REmℓt− j−d , REmℓt

)
+Cov

(
REmℓt− j , REmℓt−d

))
Var(∆dREmℓt)

(31)

To simplify this expression, we can make a stationarity assumption, that Cov
(
REmℓt− j , REmℓt

)
= Cov

(
REmℓt ′− j , REmℓt ′

)
for all years t and t ′. Then, Cov

(
REmℓt− j , REmℓt

)
= Cov

(
REmℓt− j−d , REmℓt−d

)
, and we can rewrite equation (31) as

Cov(∆dYmℓt , ∆dREmℓt)

Var(∆dREmℓt)
= β0 +

2
J
∑
j=1

β jCov
(
REmℓt− j , REmℓt

)
Var(∆dREmℓt)

−

J
∑
j=1

β jCov
(
REmℓt− j−d , REmℓt

)
Var(∆dREmℓt)

−

J
∑
j=1

β jCov
(
REmℓt− j , REmℓt−d

)
Var(∆dREmℓt)

(32)

The first two terms in the above expression do not depend on d, and so they should not be contributing to the trend in
coefficients seen in table 1.

To learn about the last two terms, we make an additional assumption that for all t, the absolute value of Cov(REmℓt−d , REmℓt)
decreasing monotonically toward a limit of zero as d increases. In other words, we assume the relevant employment share
from this year has more to do with the relevant employment share from last year than it does with any prior year, and that the
relationship between relevant employment share and historical values of the share becomes negligible as we look far enough
into the past. Under this assumption, the absolute value of the third term in equation (32) decreases monotonically toward 0.

The fourth term is more complicated, because the magnitude of each β jCov
(
REmℓt− j , REmℓt−d

)
will increase monoton-

ically as d approaches j. Nevertheless, once d becomes greater than J, the amount of time between t − j and t −d will grow
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monotonically with d for all j, and so the full fourth term will begin decreasing monotonically toward 0. In the limit as d
increases, then, the last two terms converge to zero, and equation (32) becomes the constant

Cov(∆dYmℓt , ∆dREmℓt)

Var(∆dREmℓt)
= β0 +

2
J
∑
j=1

β jCov
(
REmℓt− j , REmℓt

)
Var(∆dREmℓt)

(33)

This provides intuition for why the coefficient effects shown in table 1 eventually level off as d increases.
As can be clearly seen from equation (32), however, the path that the coefficient estimates take to this limit will depend

on both on the values of the β j terms and the covariances between relevant employment shares over different lengths of time.
For this reason, the trend of the coefficients in table 1 contains valuable information about these values. We should also point
out that just like our results in table 1 provide evidence that the relevant employment shares have lagged effects, they also
provide evidence against a model in which relevant employment shares have no effect. If β j had been 0 for j = 0 through
J, equation (32) suggests that we should have found a null effect in our estimates of β0 as well. The fact that our estimated
coefficients were statistically significant therefore suggests at least one β j term was nonzero, and that the local labor market
has effects on student course taking. We intend on using our estimates from table 1 and other tables in the regression section
as moments when estimating our full model.

An alternative method would be to try and estimate equation (29) directly from the data. We do not take this approach
for two reasons: First, it would demand the use of J separate instrumental variables to address the possible connections
between each REmℓt term and unobserved variables. This is infeasible given our sample size. Second, even if we were to
use J separate instrumental variables, the form of (29) is quite restrictive. For example, it requires that each lagged value of
relevant employment would have linear effects on the outcome, and that each of these effects would not depend at all on the
values of relevant employment in other years.

In section 4.1, we mention that lagged conditions in the local labor market could affect a student’s present course-taking
choices if students begin to prepare for those courses in earlier years, and so students do not have sufficient time to react to
contemporaneous changes in the labor market. This is the explanation that we will largely focus on in our structural model.
There are at least two other possible explanations for the upward trend in table 1. The first one is that short-term movements
in industries are volatile, and students may be less likely to react to them because they do not think that they will persist.
This may be especially relevant for high school students, who likely will not enter the labor market and earn the rewards
of a college degree there until several years later. Longer term changes, by contrast, may be more indicative of long term
conditions in industries, and students may react to them more for that reason. Second, it could be that not all students learn
about changes in the industry market instantly, and it may take several years before all students are aware of the changes. This
explanation is in line with Auclert et al. (2020), who explain the seemingly delayed response of macroeconomic variables
to changing conditions by arguing that individual agents may learn about these changing conditions with some delay. In the
future, we hope to more directly consider these stories by including additional features to the model. For example, we hope
to add a mechanism by which students only update their beliefs on SEt with a certain probability each period, and otherwise
continue making decisions as though the expected realization of SEt = ρSE

0 +ρSE
1 SEt−1 had occurred in time t.

B.2 Using Regression Results to Identify Parameters in the Structural Model

The above section showed how coefficient estimates like those prepared in section 4 encode information about the effects
of relevant employment shares in prior time periods. To more easily see how these moments will be useful in identifying
our model, we can rewrite equation (32) through the lens of the model. Within the model, the rmkt relevance terms are
held fixed over time, the share of employment in STEM SEt follows an AR-1 process, and there are only two industries—
one STEM-intensive and the other non-STEM intensive. In this case, the relevant employment share for a major m can be
re-written

REmℓt = rmsSEt + rmn (1−SEt)

Then, keeping in mind the AR-1 process of SEt+1 = ρSE
0 +ρSE

1 SEt +ωt , equation (32) simplifies down to

Cov(∆dYmℓt , ∆dREmℓt)

Var(∆dREmℓt)
= β0 +

J
∑
j=1

β j

(
2
(

ρSE
1

) j
−
(

ρSE
1

)( j+d)
−
(

ρSE
1

)| j−d|
)

2
(

1−
(
ρSE

1

)d
) (34)
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This expression is linear in the β j terms. Thus, equation (34) shows that preparing some number J of coefficient estimates
at different lags d will be sufficient to pin down J separate β j terms,75 each representing the influence of a lagged value of
relevant employment conditions on students’ present decisions in Ymℓt . We include 5 separate lags for each of the regression
moments used in our simulated method of moments procedure, suggesting that the effects of relevant employment are pinned
down in the current period and in each of the previous 4 periods. Since there are only 4 periods in which students are able
to make decisions within the model, we argue that this should be more than sufficient to identify the δ parameters governing
how students value SEt realizations while in school and wages once in the labor market.

B.3 Additional Regression Results

In this section, we examine the robustness of the results presented in section 4, and also add other regressions for complete-
ness. To begin, we will explain table 18 in detail, and then the remaining tables will follow similar formats. The top row
shows the overall OLS estimates. These are generally lower than the 2SLS estimates, suggesting that the instrument is cor-
recting for downward bias. The 2SLS row shows the results from table 1, and the “2SLS STEM” and “2SLS Non-STEM”
rows show the results of estimating equation (4) separately for m =STEM and m =Non-STEM. In this case, the effects
are going in the same direction for both rows, suggesting that the overall effect presented in the “2SLS” row is not driven
exclusively by student’s responses in either class group.

The next three rows of table 18 break these results down for different types of classes. Of the classes listed here, it
appears that the results in the “2SLS” row are most being driven most prominently by student enrollment in Career and
Technical Education (CTE) courses. This makes sense, given their close connection to the labor market. There are positive
but statistically insignificant effects for “advanced” courses, and statistically insignificant negative effects for courses in
which students can earn college credit.

Finally, the last two rows present estimates where each of the industry-specific terms summed in equation 5 and each
year are included as separate instruments. In other words, we include

rmk0skℓ0

 gT X
kt

∑
k′

sk′ℓ0gT X
k′t

−
gT X

kt−d

∑
k′

sk′ℓ0gT X
k′t−d


as a separate instrument for every combination of k and t. This kind of robustness check was suggested by Goldsmith-
Pinkham et al. (2020), and serves to check whether we are properly specifying equation (4) when we choose to sum the
relevant employment across industries. We show this done in two ways: first, by including all of these instruments in a
single 2SLS estimation, and second by doing a LIML estimation. The fact that the signs and magnitudes of these estimates
are similar to those presented in the 2SLS row provides encouraging evidence that our equations are properly specified.
However, as described in section B.1, the variation in the coefficient estimates across the columns still suggests that there
are non-contemporaneous effects that this regression method will not be able to capture directly. To do that, we will use a
structural model.

75Barring, of course, the unlikely scenario in which the resulting versions of equation (34) were linearly dependent.
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Table 18: Change in the Share of Courses High School Seniors take in subject m

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1-year 2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year

OLS -0.0384 0.0069 0.1471 0.1911 0.2783∗ 0.3451∗ 0.4031∗∗ 0.4610∗∗ 0.5500∗∗ 0.6591∗∗

(0.0683) (0.0820) (0.0845) (0.0976) (0.1234) (0.1366) (0.1340) (0.1450) (0.1780) (0.2050)

2SLS -0.2817 -0.0450 0.1283 0.5640 0.9458∗ 1.0525∗∗ 1.0373∗ 0.9471∗ 0.9465∗ 0.9549∗

(0.3323) (0.3986) (0.4030) (0.4110) (0.4120) (0.4041) (0.4059) (0.3914) (0.4390) (0.4540)

2SLS STEM -0.2890 -0.1884 -0.0512 0.2616 0.5283 0.6450∗ 0.6728∗ 0.5661 0.5897 0.6164
(0.3265) (0.3925) (0.3627) (0.3332) (0.3052) (0.3110) (0.3029) (0.3004) (0.3161) (0.3309)

2SLS Non-STEM -0.5650 -0.2217 -0.1282 0.2802 0.6059 0.7296 0.6929 0.5912 0.5905 0.5912
(0.3950) (0.4423) (0.3969) (0.3699) (0.3480) (0.3750) (0.3648) (0.3486) (0.3601) (0.3802)

Advanced 0.1124 0.1305 0.1725 0.0901 0.2071 0.1406 0.1069 0.0915 0.0780 0.0473
(0.1497) (0.1360) (0.1682) (0.2497) (0.2766) (0.2932) (0.2965) (0.2832) (0.3239) (0.3553)

College Credit -0.0860 -0.0647 -0.0114 -0.0528 -0.0134 -0.0208 -0.0117 -0.0048 0.0058 0.0151
(0.1276) (0.0925) (0.0804) (0.0779) (0.0838) (0.0894) (0.0929) (0.0947) (0.0994) (0.1019)

CTE 0.0228 0.1961 0.3067∗ 0.3735∗ 0.4455∗ 0.4265∗ 0.4052 0.3809 0.4087 0.4338∗

(0.1993) (0.1468) (0.1402) (0.1746) (0.2010) (0.2087) (0.2075) (0.1964) (0.2114) (0.2091)

All Instruments -0.0872 -0.0836 0.0790 0.3499∗∗ 0.5985∗∗ 0.7738∗∗∗ 0.7513∗∗∗ 0.7722∗∗∗ 0.7765∗∗ 0.8908∗∗

(0.1002) (0.1374) (0.1339) (0.1326) (0.1868) (0.2128) (0.2070) (0.2116) (0.2402) (0.2789)

LIML -0.1921 -0.2317 -0.0578 0.6579∗ 1.2676∗∗ 1.3727∗∗∗ 1.2056∗∗∗ 1.1019∗∗∗ 0.9902∗∗ 1.1114∗∗

(0.2718) (0.3176) (0.3575) (0.2680) (0.4266) (0.3772) (0.3488) (0.3225) (0.3363) (0.3997)

Observations 2,546 2,412 2,278 2,144 2,010 1,876 1,742 1,608 1,474 1,340
Boot. P Val. for 2SLS 0.428 0.864 0.012 0.003 0.116 0.011 0.001 0.002 0.004 0.010
Boot. P Val. for STEM 0.876 0.001 0.966 0.363 0.216 0.122 0.118 0.153 0.160 0.880
Boot. P Val. for Non-STEM 0.221 0.006 0.883 0.448 0.226 0.131 0.187 0.226 0.259 0.741
F-Stat 9.689 22.654 27.969 21.810 19.815 20.166 20.274 20.389 18.545 18.323
Major-Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Clustering CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ
Standard errors in parentheses

The STEM and Non-STEM rows only used classes from those subjects, so they have half as many observations.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 19: Change in the Share of Course Offerings that are in subject m

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1-year 2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year

OLS -0.0236 0.0101 0.0045 -0.0030 -0.0218 -0.0104 -0.0122 -0.0159 -0.0181 -0.0147
(0.0581) (0.0587) (0.0505) (0.0478) (0.0433) (0.0506) (0.0574) (0.0649) (0.0677) (0.0805)

2SLS 0.0951 -0.0915 -0.0122 0.0045 0.0689 0.0989 0.1182 0.1115 0.1289 0.1592
(0.3114) (0.2204) (0.2290) (0.1963) (0.1986) (0.1754) (0.1725) (0.1691) (0.1866) (0.1850)

2SLS STEM 0.0627 -0.1986 -0.1921 -0.2238 -0.2693 -0.1979 -0.1602 -0.1777 -0.1794 -0.1725
(0.2794) (0.2025) (0.2055) (0.1804) (0.1704) (0.1373) (0.1435) (0.1308) (0.1417) (0.1511)

2SLS Non-STEM -0.0239 -0.1878 -0.1312 -0.1159 -0.0347 0.0227 0.0186 -0.0236 -0.0278 -0.0167
(0.3426) (0.2380) (0.2145) (0.1932) (0.1840) (0.1633) (0.1579) (0.1468) (0.1543) (0.1647)

Advanced 0.0428 -0.0130 0.0831 -0.0278 -0.0204 -0.1298 -0.1386 -0.1565 -0.2059 -0.2468
(0.1530) (0.1124) (0.1352) (0.1727) (0.2009) (0.2128) (0.2193) (0.2154) (0.2450) (0.2644)

College Credit -0.1420 -0.1002 -0.0630 -0.1550 -0.1656 -0.2053 -0.2074 -0.2068 -0.2159 -0.2082
(0.1155) (0.1055) (0.0950) (0.1014) (0.1128) (0.1225) (0.1186) (0.1232) (0.1301) (0.1324)

CTE 0.1452 0.1145 0.1940 0.2227 0.2846 0.2858 0.2506 0.2069 0.2301 0.2721
(0.1657) (0.1235) (0.1480) (0.1695) (0.1978) (0.1865) (0.1847) (0.1709) (0.1783) (0.1775)

All Instruments -0.0574 -0.1288 -0.0657 -0.0807 -0.0830 -0.0332 -0.0421 -0.0510 -0.0555 -0.0326
(0.0953) (0.0878) (0.0799) (0.0709) (0.0662) (0.0793) (0.0862) (0.0879) (0.0877) (0.1036)

LIML -0.1103 -0.3063 -0.1392 -0.1576 -0.1436 -0.0605 -0.0746 -0.0868 -0.0915 -0.0545
(0.2017) (0.1728) (0.1345) (0.1193) (0.1142) (0.1412) (0.1443) (0.1397) (0.1360) (0.1741)

Observations 2,546 2,412 2,278 2,144 2,010 1,876 1,742 1,608 1,474 1,340
Boot. P Val. for 2SLS 0.792 0.428 0.097 0.007 0.191 0.105 0.053 0.102 0.122 0.158
Boot. P Val. for STEM 0.512 0.028 0.513 0.370 0.142 0.177 0.256 0.221 0.258 0.059
Boot. P Val. for Non-STEM 0.784 0.039 0.690 0.709 0.911 0.917 0.976 0.922 0.912 0.292
F-Stat 9.689 22.654 27.969 21.810 19.815 20.166 20.274 20.389 18.545 18.323
Major-Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Clustering CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ
Standard errors in parentheses

The STEM and Non-STEM rows only used classes from those subjects, so they have half as many observations.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 20: Change in the Share of Senior-year Classes in subject m where the student earns credit

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1-year 2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year

OLS -0.0472 -0.0541∗ -0.0606 -0.0856∗ -0.1098 -0.1127 -0.1272 -0.1355 -0.1568 -0.1775
(0.0268) (0.0274) (0.0340) (0.0410) (0.0561) (0.0638) (0.0684) (0.0799) (0.0888) (0.0961)

2SLS 0.0153 0.0313 0.0468 -0.0718 -0.1152 -0.1665 -0.1266 -0.1072 -0.0753 -0.0802
(0.1756) (0.0810) (0.0751) (0.0758) (0.0902) (0.0934) (0.0927) (0.0822) (0.0949) (0.0966)

2SLS STEM 0.0188 -0.2011 -0.2025 -0.5634∗∗∗ -0.7212∗∗∗ -0.8684∗∗∗ -0.7652∗∗∗ -0.7042∗∗∗ -0.6690∗∗∗ -0.6694∗∗∗

(0.3349) (0.2022) (0.1753) (0.1684) (0.1938) (0.2045) (0.1932) (0.1677) (0.1833) (0.1937)

2SLS Non-STEM -0.0806 0.1424 0.1457 0.2181∗ 0.2382∗ 0.2702∗ 0.2447∗ 0.2114 0.2023 0.1933
(0.1619) (0.1128) (0.1155) (0.0935) (0.1117) (0.1137) (0.1098) (0.1152) (0.1189) (0.1138)

Advanced -0.1554 -0.1353 -0.1993 -0.2189 -0.2409 -0.2370 -0.2173 -0.2020 -0.1504 -0.1431
(0.2067) (0.1132) (0.1067) (0.1164) (0.1352) (0.1351) (0.1373) (0.1290) (0.1466) (0.1452)

College Credit -0.5842∗ -0.3146∗ -0.3159∗∗ -0.2538∗ -0.2175 -0.2415∗ -0.2864∗ -0.2961∗∗ -0.2207 -0.2165
(0.2876) (0.1379) (0.1172) (0.1191) (0.1265) (0.1196) (0.1160) (0.1060) (0.1141) (0.1144)

CTE -0.1602 0.0501 -0.0687 -0.0219 0.0824 0.1928 0.2583∗ 0.1838 0.2005 0.1846
(0.2212) (0.1188) (0.1451) (0.1512) (0.1498) (0.1440) (0.1208) (0.1280) (0.1313) (0.1230)

All Instruments -0.0143 0.0262 -0.0114 -0.0999 -0.1067 -0.1376 -0.1476 -0.1644 -0.1673 -0.1787
(0.0609) (0.0646) (0.0505) (0.0632) (0.0883) (0.0908) (0.0909) (0.0893) (0.0966) (0.1002)

LIML 0.0735 0.1649 0.0679 -0.1168 -0.1034 -0.1641 -0.1677 -0.1880 -0.1765 -0.1798
(0.2010) (0.1544) (0.1113) (0.1116) (0.1501) (0.1481) (0.1427) (0.1288) (0.1427) (0.1489)

Observations 2,546 2,412 2,278 2,144 2,010 1,876 1,742 1,608 1,474 1,340
Boot. P Val. for 2SLS 0.943 0.931 0.168 0.623 0.277 0.443 0.817 0.738 0.382 0.204
Boot. P Val. for STEM 0.691 0.410 0.304 0.045 0.005 0.001 0.001 0.001 0.015 0.002
Boot. P Val. for Non-STEM 0.452 0.441 0.221 0.042 0.120 0.066 0.073 0.141 0.303 0.106
F-Stat 10 23 28 22 20 20 20 20 19 18
Obs for Advanced 2529.000 2399.000 2265.000 2131.000 1997.000 1863.000 1729.000 1596.000 1461.000 1329.000
Obs for College-Credit 2490.000 2358.000 2224.000 2094.000 1959.000 1826.000 1694.000 1563.000 1431.000 1306.000
Obs for CTE 1745.000 1619.000 1489.000 1362.000 1237.000 1113.000 990.000 866.000 741.000 673.000
Major-Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Clustering CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ
Standard errors in parentheses

The STEM and Non-STEM rows only used classes from those subjects, so they have half as many observations.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 21: Change in the Share of College-Bound High School Graduates Choosing m as their First Major in College

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1-Yr. Change 2-Yr. Change 3-Yr. Change 4-Yr. Change 5-Yr. Change 6-Yr. Change 7-Yr. Change 8-Yr. Change 9-Yr. Change 10-Yr. Change

OLS -0.1687∗ -0.0642 0.0370 0.1410 0.1098 0.1061 0.1042 0.0956 0.0509 0.1224
(0.0817) (0.0952) (0.1357) (0.1992) (0.2456) (0.2903) (0.3104) (0.3297) (0.3696) (0.3821)

2SLS 2.0352 1.5376 1.3721 1.3149 1.7473 1.5956 1.9044 1.8343 2.3994 2.4063
(1.4322) (0.8706) (0.9841) (1.3821) (2.4997) (2.9268) (3.4250) (3.1406) (4.0287) (4.1204)

2SLS STEM 0.6409 0.7077∗∗ 0.6921∗∗ 0.5621∗∗ 0.6067∗∗ 0.4929∗∗ 0.4944∗∗ 0.4770∗∗ 0.4635∗ 0.4790∗

(0.3392) (0.2699) (0.2225) (0.2131) (0.1943) (0.1711) (0.1694) (0.1740) (0.1869) (0.1949)

2SLS NonSTEM 3.1831 2.0733 1.8239 2.2386 8.6893 -9.7656 -7.5778 -15.9694 -12.8769 -13.1304
(2.7656) (1.4753) (1.8105) (3.7166) (55.1529) (95.7088) (46.7693) (181.2749) (95.2053) (103.7415)

All Instruments -0.0120 0.2880 0.2098 0.3195 0.4120 0.3159 0.0061 -0.0201 -0.0726 -0.0412
(0.1595) (0.1471) (0.1826) (0.2045) (0.2467) (0.2966) (0.2859) (0.2742) (0.2584) (0.2757)

LIML 0.0095 0.3280∗ 0.2287 0.3379 0.4565 0.3492 -0.0072 -0.0338 -0.0852 -0.0579
(0.1786) (0.1605) (0.1985) (0.2217) (0.2767) (0.3376) (0.3207) (0.3029) (0.2817) (0.3009)

Observations 43,282 41,004 38,726 36,448 34,170 31,892 29,614 27,336 25,058 22,780
Boot. P Value for 2SLS 0.059 0.023 0.089 0.238 0.309 0.403 0.389 0.376 0.353 0.360
Boot. P Value for 2SLS STEM 0.051 0.012 0.005 0.019 0.003 0.009 0.014 0.016 0.023 0.027
Boot. P Value for 2SLS NonSTEM 0.099 0.060 0.168 0.334 0.780 0.858 0.778 0.879 0.814 0.837
Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Major-Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
First-Stage F 3.407 6.034 4.321 2.396 0.976 0.700 0.629 0.732 0.588 0.542
First-Stage F, STEM 10.140 21.642 30.831 29.739 26.818 26.055 26.798 25.450 22.919 21.734
First-Stage F, Non-STEM 1.942 3.581 1.998 0.627 0.025 0.011 0.031 0.008 0.020 0.018
Clustering CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ
Weight 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads
Standard errors in parentheses

The STEM row used 23.529% of the observations from the 2SLS row, and the NonSTEM row used the other 76.471%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 22: Change in the Share of Community College-Bound High School Graduates Choosing m as their First Major in College

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1-Yr. Change 2-Yr. Change 3-Yr. Change 4-Yr. Change 5-Yr. Change 6-Yr. Change 7-Yr. Change 8-Yr. Change 9-Yr. Change 10-Yr. Change

OLS -0.2298∗ -0.0947 0.0031 0.1793 0.1512 0.1717 0.1789 0.1554 0.1738 0.2685
(0.0978) (0.1242) (0.1863) (0.2779) (0.3449) (0.4040) (0.4177) (0.4334) (0.4780) (0.4908)

2SLS 2.8703 2.0970 1.9682 2.1485 3.2663 3.1925 3.6434 3.3716 4.3276 4.4572
(2.0499) (1.2303) (1.3811) (2.0366) (3.9798) (4.7126) (5.5157) (4.9352) (6.4729) (6.7506)

2SLS STEM 0.5936 0.5775 0.6156 0.5999 0.6381∗ 0.5164 0.5211∗ 0.4574∗ 0.4998∗ 0.4642∗

(0.4596) (0.3608) (0.3323) (0.3348) (0.3105) (0.2686) (0.2445) (0.2312) (0.2366) (0.2317)

2SLS NonSTEM 4.7364 3.1246 2.9912 4.2290 20.0884 -25.9447 -17.7332 -37.0580 -26.7230 -28.7616
(4.0265) (2.0747) (2.5911) (6.0052) (123.2762) (256.2020) (108.2091) (442.6217) (197.8784) (229.0172)

All Instruments 0.0943 0.4178∗ 0.1919 0.3019 0.3986 0.2992 -0.1102 -0.1451 -0.1576 -0.1582
(0.1880) (0.2012) (0.2353) (0.2768) (0.3439) (0.4414) (0.3823) (0.3588) (0.3222) (0.3358)

LIML 0.1443 0.4879∗ 0.2155 0.3169 0.4415 0.3235 -0.1574 -0.1906 -0.2018 -0.2176
(0.2142) (0.2228) (0.2591) (0.3055) (0.3952) (0.5163) (0.4392) (0.4074) (0.3620) (0.3798)

Observations 43,078 40,800 38,590 36,312 34,034 31,756 29,478 27,200 24,922 22,678
Boot. P Value for 2SLS 0.078 0.029 0.079 0.193 0.248 0.317 0.327 0.319 0.315 0.317
Boot. P Value for 2SLS STEM 0.193 0.115 0.070 0.079 0.048 0.068 0.049 0.070 0.053 0.066
Boot. P Value for 2SLS NonSTEM 0.103 0.040 0.111 0.273 0.775 0.859 0.776 0.882 0.813 0.839
Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Major-Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
First-Stage F 3.406 6.019 4.309 2.385 0.972 0.698 0.629 0.732 0.586 0.542
First-Stage F, STEM 10.085 21.998 31.915 31.411 28.282 27.285 27.833 26.171 23.441 22.256
First-Stage F, Non-STEM 1.940 3.574 1.997 0.627 0.025 0.011 0.029 0.007 0.019 0.016
Clustering CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ
Weight 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads
Standard errors in parentheses

The STEM row used 23.529% of the observations from the 2SLS row, and the NonSTEM row used the other 76.471%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 23: Change in the Share of 4-year public university-Bound High School Graduates Choosing m as their First Major in College

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1-Yr. Change 2-Yr. Change 3-Yr. Change 4-Yr. Change 5-Yr. Change 6-Yr. Change 7-Yr. Change 8-Yr. Change 9-Yr. Change 10-Yr. Change

OLS 0.0199 0.0548 0.0888 0.0414 0.0511 0.0045 -0.0421 -0.0277 -0.1599 -0.1707
(0.1551) (0.1295) (0.1117) (0.1198) (0.1267) (0.1432) (0.1631) (0.1789) (0.2066) (0.2272)

2SLS 0.8770 0.2978 0.0715 -0.2788 -1.3935 -1.2935 -1.7060 -1.2792 -1.2202 -1.4412
(1.4344) (0.6711) (0.6602) (0.7924) (1.8301) (2.3364) (2.8302) (2.2172) (2.3547) (2.6290)

2SLS STEM 0.9857 0.9446 0.8477 0.4050 0.5642 0.2008 0.0874 0.1664 0.1111 0.2530
(0.8156) (0.5758) (0.5673) (0.5185) (0.5694) (0.5220) (0.5424) (0.5226) (0.4920) (0.5183)

2SLS NonSTEM 0.7703 -0.2199 -0.6910 -1.4110 -14.9844 18.6419 11.4995 23.7250 12.0759 15.1267
(2.6095) (1.2261) (1.2331) (2.2413) (86.5275) (209.0948) (72.7483) (340.7319) (104.8641) (138.5299)

All Instruments -0.3718 -0.3571 -0.2412 -0.1083 -0.0435 0.3060 0.1054 -0.0013 -0.1879 -0.1843
(0.2835) (0.1929) (0.1993) (0.2453) (0.2849) (0.2948) (0.2910) (0.2810) (0.2757) (0.3025)

LIML -0.4059 -0.3920 -0.2706 -0.1225 -0.0573 0.3578 0.1307 0.0025 -0.1920 -0.1861
(0.3066) (0.2061) (0.2150) (0.2661) (0.3225) (0.3375) (0.3339) (0.3161) (0.3103) (0.3369)

Observations 41,854 39,678 37,468 35,258 32,980 30,838 28,628 26,418 24,140 21,998
Boot. P Value for 2SLS 0.472 0.647 0.903 0.673 0.253 0.380 0.325 0.360 0.397 0.365
Boot. P Value for 2SLS STEM 0.264 0.159 0.206 0.505 0.366 0.716 0.880 0.766 0.831 0.650
Boot. P Value for 2SLS NonSTEM 0.700 0.838 0.448 0.316 0.757 0.872 0.780 0.902 0.845 0.858
Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Major-Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
First-Stage F 3.418 6.077 4.322 2.385 0.979 0.711 0.634 0.745 0.603 0.555
First-Stage F, STEM 10.320 21.753 30.408 28.710 26.026 25.466 26.645 25.445 23.231 21.908
First-Stage F, Non-STEM 1.966 3.648 2.019 0.631 0.027 0.008 0.026 0.005 0.014 0.012
Clustering CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ
Weight 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads
Standard errors in parentheses

The STEM row used 23.529% of the observations from the 2SLS row, and the NonSTEM row used the other 76.471%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 24: Change in the Share of College-Bound High School Graduates who Choose m as their First Major, using their College Location for the Relevant Employment
Variable

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1-Yr. Change 2-Yr. Change 3-Yr. Change 4-Yr. Change 5-Yr. Change 6-Yr. Change 7-Yr. Change 8-Yr. Change 9-Yr. Change 10-Yr. Change

OLS 0.0166 0.0850 0.2260 0.2067 0.3125 0.3596 0.4104∗ 0.5064∗ 0.5929∗ 0.7534∗

(0.1797) (0.1604) (0.2305) (0.1865) (0.1864) (0.1908) (0.2007) (0.2511) (0.2982) (0.3698)

2SLS 0.9349 0.3390 0.3468 0.6979 0.7580 1.4553 1.4484 1.4217 1.6687 1.5656
(0.8007) (0.7372) (0.6438) (0.6783) (0.8887) (1.1344) (1.1532) (1.2609) (1.4515) (1.4621)

2SLS STEM -0.1009 -0.1364 0.1330 0.3320 0.4834 0.8242∗ 0.8252∗ 0.7894 0.7172 0.8096
(0.1990) (0.2864) (0.2443) (0.2596) (0.3141) (0.4116) (0.3955) (0.4435) (0.4471) (0.4620)

2SLS NonSTEM 1.5327 0.6141 0.4417 0.9157 0.9891 2.0119 2.0936 2.1247 2.6138 2.5034
(1.2495) (1.0727) (0.9203) (1.0317) (1.3672) (1.9164) (2.0248) (2.2465) (2.7196) (2.7724)

All Instruments -0.0023 0.1067 0.0639 0.3049 0.3504 0.4696 0.4964 0.1550 0.3113 0.5973∗

(0.2820) (0.2851) (0.3026) (0.2677) (0.3201) (0.3205) (0.2559) (0.2233) (0.2382) (0.2678)

LIML -0.0065 0.1103 0.0425 0.3186 0.3580 0.5055 0.5178 0.0898 0.2637 0.5676
(0.3353) (0.3247) (0.3347) (0.2985) (0.3766) (0.4167) (0.3153) (0.2545) (0.2676) (0.3072)

Observations 23,222 21,930 20,638 19,346 18,054 16,762 15,470 14,178 12,886 11,594
Boot. P Value for 2SLS 0.273 0.696 0.622 0.321 0.453 0.146 0.164 0.253 0.221 0.254
Boot. P Value for 2SLS STEM 0.650 0.728 0.597 0.299 0.265 0.235 0.243 0.295 0.329 0.252
Boot. P Value for 2SLS NonSTEM 0.239 0.646 0.668 0.392 0.523 0.281 0.301 0.363 0.309 0.329
Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Major-Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
First-Stage F 22.888 27.281 20.726 15.975 13.181 12.072 11.891 9.189 7.379 6.775
First-Stage F, STEM 16.898 27.530 50.466 41.313 27.452 21.441 22.734 21.527 19.396 15.925
First-Stage F, Non-STEM 18.997 19.515 12.503 9.912 8.675 7.754 7.361 5.438 4.012 3.727
Clustering CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ
Weight 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads
Standard errors in parentheses

The STEM row used 23.529% of the observations from the 2SLS row, and the NonSTEM row used the other 76.471%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 25: Change in the Share of All High School Graduates who Attend College and Choose m as their First Major

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1-Yr. Change 2-Yr. Change 3-Yr. Change 4-Yr. Change 5-Yr. Change 6-Yr. Change 7-Yr. Change 8-Yr. Change 9-Yr. Change 10-Yr. Change

OLS -0.0507 -0.0172 0.0371 0.0815 0.0788 0.0895 0.0926 0.0973 0.0799 0.1119
(0.0324) (0.0331) (0.0480) (0.0715) (0.0934) (0.1146) (0.1251) (0.1350) (0.1497) (0.1546)

2SLS 0.5801 0.3256 0.2275 0.1059 0.1618 0.0603 0.1749 0.1542 0.2499 0.1506
(0.4475) (0.2451) (0.2841) (0.4064) (0.7112) (0.9222) (1.0268) (0.9513) (1.1092) (1.1548)

2SLS STEM 0.3195∗ 0.3005∗∗ 0.2974∗∗ 0.2438∗∗ 0.2500∗∗ 0.2156∗∗ 0.2150∗∗ 0.2033∗∗ 0.1973∗∗ 0.2021∗

(0.1530) (0.1060) (0.0942) (0.0899) (0.0863) (0.0772) (0.0749) (0.0736) (0.0761) (0.0802)

2SLS NonSTEM 0.8184 0.3622 0.1903 -0.0610 -0.2555 1.3111 0.0136 -0.1143 -0.7051 -0.0486
(0.8138) (0.4130) (0.5090) (1.0038) (6.0592) (13.2155) (5.8091) (11.8791) (10.0951) (8.5038)

All Instruments -0.0387 0.0870 0.0531 0.1285 0.1874 0.1632 0.0764 0.0882 0.0717 0.0971
(0.0724) (0.0635) (0.0815) (0.0915) (0.1182) (0.1428) (0.1278) (0.1203) (0.1098) (0.1143)

LIML -0.0362 0.1055 0.0556 0.1354 0.2104 0.1802 0.0730 0.0865 0.0705 0.0948
(0.0852) (0.0721) (0.0920) (0.1028) (0.1395) (0.1721) (0.1513) (0.1391) (0.1241) (0.1292)

Observations 43,282 41,004 38,726 36,448 34,170 31,892 29,614 27,336 25,058 22,780
Boot. P Value for 2SLS 0.091 0.124 0.385 0.759 0.739 0.920 0.787 0.799 0.717 0.833
Boot. P Value for 2SLS STEM 0.046 0.008 0.005 0.018 0.008 0.015 0.018 0.021 0.025 0.026
Boot. P Value for 2SLS NonSTEM 0.158 0.289 0.623 0.925 0.943 0.869 0.997 0.987 0.907 0.993
Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Major-Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
First-Stage F 3.407 6.034 4.321 2.396 0.976 0.700 0.629 0.732 0.588 0.542
First-Stage F, STEM 10.187 21.937 32.072 31.302 28.532 26.535 27.103 25.816 23.356 22.299
First-Stage F, Non-STEM 1.944 3.587 2.000 0.626 0.024 0.012 0.032 0.008 0.020 0.017
Clustering CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ
Weight 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads
Standard errors in parentheses

The STEM row used 23.529% of the observations from the 2SLS row, and the NonSTEM row used the other 76.471%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 26: Change in the Share of All High School Graduates who go to Community College and Choose m as their First Major

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1-Yr. Change 2-Yr. Change 3-Yr. Change 4-Yr. Change 5-Yr. Change 6-Yr. Change 7-Yr. Change 8-Yr. Change 9-Yr. Change 10-Yr. Change

OLS -0.0582 -0.0178 0.0332 0.0815 0.0829 0.1032 0.1131 0.1176 0.1145 0.1495
(0.0300) (0.0314) (0.0462) (0.0655) (0.0843) (0.1017) (0.1061) (0.1122) (0.1239) (0.1281)

2SLS 0.5818 0.3804 0.3567 0.3505 0.6161 0.5555 0.6728 0.5808 0.7602 0.7248
(0.4264) (0.2470) (0.2856) (0.4045) (0.8024) (0.9371) (1.1020) (0.9670) (1.2396) (1.2419)

2SLS STEM 0.2666 0.2393∗ 0.2431∗ 0.2160∗ 0.2081∗ 0.1733∗ 0.1700∗ 0.1491∗ 0.1590∗ 0.1496∗

(0.1460) (0.1123) (0.1001) (0.0958) (0.0836) (0.0744) (0.0681) (0.0647) (0.0673) (0.0692)

2SLS NonSTEM 0.8641 0.5016 0.4824 0.5951 3.7284 -3.9248 -3.0563 -5.9110 -4.4962 -4.5404
(0.7919) (0.4088) (0.5152) (1.0406) (23.5567) (37.1018) (18.6183) (67.3707) (33.2901) (36.7918)

All Instruments 0.0054 0.1112∗ 0.0575 0.1112 0.1555 0.1515 0.0719 0.0909 0.0839 0.0913
(0.0570) (0.0540) (0.0682) (0.0727) (0.1023) (0.1405) (0.1234) (0.1174) (0.0974) (0.0990)

LIML 0.0171 0.1335∗ 0.0611 0.1152 0.1694 0.1620 0.0642 0.0864 0.0791 0.0822
(0.0661) (0.0610) (0.0764) (0.0811) (0.1192) (0.1678) (0.1441) (0.1347) (0.1106) (0.1123)

Observations 43,078 40,800 38,590 36,312 34,034 31,756 29,478 27,200 24,922 22,678
Boot. P Value for 2SLS 0.073 0.059 0.136 0.287 0.267 0.368 0.349 0.367 0.344 0.365
Boot. P Value for 2SLS STEM 0.053 0.029 0.017 0.027 0.021 0.033 0.025 0.043 0.037 0.054
Boot. P Value for 2SLS NonSTEM 0.116 0.109 0.199 0.360 0.774 0.852 0.777 0.875 0.817 0.841
Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Major-Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
First-Stage F 3.406 6.019 4.309 2.385 0.972 0.698 0.629 0.732 0.586 0.542
First-Stage F, STEM 10.186 21.916 32.059 31.276 28.441 26.523 27.076 25.791 23.324 22.286
First-Stage F, Non-STEM 1.943 3.573 1.989 0.619 0.023 0.012 0.032 0.008 0.020 0.017
Clustering CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ
Weight 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads
Standard errors in parentheses

The STEM row used 23.529% of the observations from the 2SLS row, and the NonSTEM row used the other 76.471%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 27: Change in the Share all High School Graduates who Attend a 4-year Public University and Choose m as their First Major in College

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1-Yr. Change 2-Yr. Change 3-Yr. Change 4-Yr. Change 5-Yr. Change 6-Yr. Change 7-Yr. Change 8-Yr. Change 9-Yr. Change 10-Yr. Change

OLS 0.0086 0.0050 0.0044 0.0003 -0.0023 -0.0122 -0.0209 -0.0211 -0.0356 -0.0383
(0.0131) (0.0112) (0.0140) (0.0180) (0.0216) (0.0271) (0.0321) (0.0351) (0.0387) (0.0411)

2SLS 0.0121 -0.0607 -0.1285 -0.2459 -0.4608 -0.4914 -0.4960 -0.4250 -0.4986 -0.5675
(0.1225) (0.0670) (0.0899) (0.1919) (0.5132) (0.6654) (0.7104) (0.5786) (0.7165) (0.8323)

2SLS STEM 0.0540 0.0616 0.0553 0.0282 0.0423 0.0426 0.0460 0.0553 0.0389 0.0539
(0.0728) (0.0676) (0.0650) (0.0606) (0.0568) (0.0542) (0.0522) (0.0493) (0.0462) (0.0519)

2SLS NonSTEM -0.0205 -0.1483 -0.2890 -0.6556 -3.8925 5.8565 3.1824 6.5751 4.2172 4.9880
(0.2236) (0.1408) (0.2261) (0.8451) (24.0671) (58.0062) (18.1066) (80.4135) (32.4767) (41.4866)

All Instruments -0.0442 -0.0242 -0.0059 0.0170 0.0305 0.0091 0.0035 -0.0026 -0.0122 0.0043
(0.0533) (0.0225) (0.0290) (0.0354) (0.0372) (0.0401) (0.0429) (0.0430) (0.0419) (0.0433)

LIML -0.0633 -0.0358 -0.0101 0.0241 0.0526 0.0288 0.0211 0.0079 -0.0009 0.0213
(0.0707) (0.0311) (0.0392) (0.0477) (0.0578) (0.0710) (0.0685) (0.0631) (0.0587) (0.0574)

Observations 41,854 39,678 37,468 35,258 32,980 30,838 28,628 26,418 24,140 21,998
Boot. P Value for 2SLS 0.919 0.335 0.103 0.120 0.211 0.273 0.278 0.268 0.283 0.288
Boot. P Value for 2SLS STEM 0.501 0.461 0.504 0.735 0.571 0.514 0.452 0.314 0.422 0.332
Boot. P Value for 2SLS NonSTEM 0.911 0.242 0.094 0.251 0.793 0.871 0.773 0.892 0.836 0.854
Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Major-Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
First-Stage F 3.418 6.077 4.322 2.385 0.979 0.711 0.634 0.745 0.603 0.555
First-Stage F, STEM 10.159 21.877 31.767 31.061 28.417 26.530 27.083 25.757 23.323 22.340
First-Stage F, Non-STEM 1.960 3.639 2.014 0.627 0.025 0.010 0.030 0.006 0.016 0.014
Clustering CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ
Weight 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads
Standard errors in parentheses

The STEM row used 23.529% of the observations from the 2SLS row, and the NonSTEM row used the other 76.471%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 28: Change in the Share of College Graduates Choosing m as their Final Major in College, with labor market conditions measured in the Senior Year of High
School in the Labor Market of the High School

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1-Yr. Change 2-Yr. Change 3-Yr. Change 4-Yr. Change 5-Yr. Change 6-Yr. Change 7-Yr. Change 8-Yr. Change 9-Yr. Change 10-Yr. Change

OLS 0.1223 0.1317 0.1384∗ 0.1768∗∗ 0.1918∗∗ 0.2570∗∗ 0.2771∗∗ 0.3024∗∗ 0.2996∗∗ 0.2872∗

(0.0911) (0.0693) (0.0685) (0.0671) (0.0723) (0.0878) (0.0969) (0.1023) (0.1129) (0.1291)

2SLS -0.2541 -0.1949 -0.2615 -0.7927 -1.3232 -0.9348 -0.1569 0.0561 0.0410 0.0332
(1.8075) (0.6499) (0.6318) (1.1593) (2.6607) (1.8148) (0.9487) (0.5678) (0.5995) (0.6927)

2SLS STEM 1.7964 0.6342 0.2523 0.3523∗ 0.3362 0.2962∗ 0.3049∗ 0.2683 0.2129 0.3337∗

(1.4170) (0.4082) (0.2292) (0.1689) (0.1769) (0.1485) (0.1460) (0.1377) (0.1443) (0.1661)

2SLS NonSTEM -2.9250 -0.8122 -0.7735 -3.2027 11.3298 12.3443 98.3013 -0.8434 -0.7358 -1.3981
(6.5815) (1.2271) (1.4327) (7.1581) (81.0752) (113.3491) (16679.7711) (4.2624) (4.2830) (8.0831)

All Instruments 0.2728 0.1051 0.1012 0.1049 0.2069 0.4502∗∗ 0.3641∗ 0.1894 0.1433 0.2166
(0.1660) (0.1177) (0.1209) (0.1061) (0.1496) (0.1714) (0.1764) (0.1555) (0.1574) (0.1521)

LIML 0.2978 0.1011 0.0967 0.0944 0.2102 0.4871∗ 0.3764 0.1753 0.1204 0.2076
(0.1921) (0.1330) (0.1334) (0.1195) (0.1785) (0.2013) (0.1981) (0.1726) (0.1776) (0.1690)

Observations 34,102 31,824 29,546 27,268 24,990 22,746 20,468 18,190 15,912 13,634
Boot. P Value for 2SLS 0.840 0.736 0.664 0.408 0.473 0.425 0.792 0.884 0.923 0.936
Boot. P Value for 2SLS STEM 0.111 0.117 0.297 0.068 0.102 0.085 0.072 0.081 0.180 0.096
Boot. P Value for 2SLS NonSTEM 0.421 0.384 0.468 0.503 0.826 0.842 0.991 0.721 0.759 0.762
Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Major-Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
First-Stage F 0.772 3.497 3.074 1.513 0.460 0.593 0.787 1.523 1.259 0.977
First-Stage F, STEM 3.267 13.712 23.599 22.327 21.490 23.479 26.945 28.478 24.893 22.191
First-Stage F, Non-STEM 0.260 1.897 1.278 0.262 0.018 0.011 0.000 0.113 0.096 0.056
Clustering CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ
Weight 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads
Standard errors in parentheses

The STEM row used 23.529% of the observations from the 2SLS row, and the Non-STEM row used the other 76.471%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 29: Change in the Share of College Graduates Choosing m as their Final Major in College, with Labor Market Conditions Measured at the Year of College
Graduation in the Labor Market of the High School

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1-Yr. Change 2-Yr. Change 3-Yr. Change 4-Yr. Change 5-Yr. Change 6-Yr. Change 7-Yr. Change 8-Yr. Change 9-Yr. Change 10-Yr. Change

OLS 0.2145 0.1663 0.3605∗∗ 0.3543∗∗ 0.3948∗ 0.3702 0.4208 0.3276 0.2740 0.2543
(0.1233) (0.1067) (0.1280) (0.1325) (0.1711) (0.2148) (0.2877) (0.3794) (0.4102) (0.4315)

2SLS 0.2078 0.2176 0.4830 0.7759 1.1781 1.4049 0.6893 -0.6419 -3.0709 5.0134
(0.4252) (0.2515) (0.3422) (0.5142) (1.1305) (2.0767) (1.6715) (2.7116) (8.2941) (9.4967)

2SLS STEM -0.0831 -0.0772 0.4943∗ 1.0337∗∗∗ 1.1297∗∗ 1.0643∗∗ 0.8252∗∗ 0.4844 0.2682 0.2694
(0.3106) (0.2314) (0.2372) (0.3060) (0.4120) (0.3994) (0.2833) (0.2477) (0.2445) (0.3470)

2SLS NonSTEM 0.3949 0.3344 0.4015 0.4698 0.9372 40.2345 1.8805 2.6526 3.7308 2.2475∗

(0.6756) (0.3849) (0.4947) (0.8293) (2.3578) (8927.6760) (10.8068) (5.7570) (5.2224) (1.1193)

All Instruments 0.4730∗ 0.4529∗∗ 0.4113∗∗ 0.4135∗∗ 0.2733 0.3865 0.6698∗ 0.7273∗∗ 0.7492∗∗ 0.9097∗∗∗

(0.1894) (0.1381) (0.1585) (0.1367) (0.2362) (0.3469) (0.2836) (0.2678) (0.2381) (0.2499)

LIML 0.5074∗ 0.4822∗∗ 0.4171∗ 0.4211∗∗ 0.2535 0.3895 0.7020∗ 0.7699∗∗ 0.7952∗∗ 0.9714∗∗∗

(0.2156) (0.1523) (0.1742) (0.1519) (0.2708) (0.4064) (0.3167) (0.2948) (0.2585) (0.2692)

Observations 31,892 29,614 27,336 25,058 22,780 20,502 18,224 15,946 13,668 11,390
Boot. P Value for 2SLS 0.630 0.370 0.133 0.072 0.169 0.310 0.510 0.676 0.545 0.427
Boot. P Value for 2SLS STEM 0.806 0.753 0.040 0.004 0.016 0.016 0.010 0.094 0.326 0.529
Boot. P Value for 2SLS NonSTEM 0.549 0.366 0.399 0.528 0.534 0.994 0.750 0.446 0.319 0.059
Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Major-Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
First-Stage F 10.030 17.565 11.372 4.971 1.623 0.517 0.494 0.316 0.190 0.220
First-Stage F, STEM 17.130 27.479 26.843 22.915 18.943 22.156 28.782 23.576 17.721 11.847
First-Stage F, Non-STEM 7.870 15.099 8.840 2.884 0.492 0.000 0.033 0.174 0.371 3.011
Clustering CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ
Weight 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads
Standard errors in parentheses

The STEM row used 23.529% of the observations from the 2SLS row, and the Non-STEM row used the other 76.471%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 30: Change in the Share of College Graduates Choosing m as their Final Major in College, with Labor Market Conditions Measured at the Year of College
Graduation in the Labor Market of the College

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1-Yr. Change 2-Yr. Change 3-Yr. Change 4-Yr. Change 5-Yr. Change 6-Yr. Change 7-Yr. Change 8-Yr. Change 9-Yr. Change 10-Yr. Change

OLS 0.2145 0.1663 0.3605∗∗ 0.3543∗∗ 0.3948∗ 0.3702 0.4208 0.3276 0.2740 0.2543
(0.1233) (0.1067) (0.1280) (0.1325) (0.1711) (0.2148) (0.2877) (0.3794) (0.4102) (0.4315)

2SLS 0.2078 0.2176 0.4830 0.7759 1.1781 1.4049 0.6893 -0.6419 -3.0709 5.0134
(0.4252) (0.2515) (0.3422) (0.5142) (1.1305) (2.0767) (1.6715) (2.7116) (8.2941) (9.4967)

2SLS STEM -0.0831 -0.0772 0.4943∗ 1.0337∗∗∗ 1.1297∗∗ 1.0643∗∗ 0.8252∗∗ 0.4844 0.2682 0.2694
(0.3106) (0.2314) (0.2372) (0.3060) (0.4120) (0.3994) (0.2833) (0.2477) (0.2445) (0.3470)

2SLS NonSTEM 0.3949 0.3344 0.4015 0.4698 0.9372 40.2345 1.8805 2.6526 3.7308 2.2475∗

(0.6756) (0.3849) (0.4947) (0.8293) (2.3578) (8927.6760) (10.8068) (5.7570) (5.2224) (1.1193)

All Instruments 0.4730∗ 0.4529∗∗ 0.4113∗∗ 0.4135∗∗ 0.2733 0.3865 0.6698∗ 0.7273∗∗ 0.7492∗∗ 0.9097∗∗∗

(0.1894) (0.1381) (0.1585) (0.1367) (0.2362) (0.3469) (0.2836) (0.2678) (0.2381) (0.2499)

LIML 0.5074∗ 0.4822∗∗ 0.4171∗ 0.4211∗∗ 0.2535 0.3895 0.7020∗ 0.7699∗∗ 0.7952∗∗ 0.9714∗∗∗

(0.2156) (0.1523) (0.1742) (0.1519) (0.2708) (0.4064) (0.3167) (0.2948) (0.2585) (0.2692)

Observations 31,892 29,614 27,336 25,058 22,780 20,502 18,224 15,946 13,668 11,390
Boot. P Value for 2SLS 0.630 0.370 0.133 0.072 0.169 0.310 0.510 0.676 0.545 0.427
Boot. P Value for 2SLS STEM 0.806 0.753 0.040 0.004 0.016 0.016 0.010 0.094 0.326 0.529
Boot. P Value for 2SLS NonSTEM 0.549 0.366 0.399 0.528 0.534 0.994 0.750 0.446 0.319 0.059
Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Major-Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
First-Stage F 10.030 17.565 11.372 4.971 1.623 0.517 0.494 0.316 0.190 0.220
First-Stage F, STEM 17.130 27.479 26.843 22.915 18.943 22.156 28.782 23.576 17.721 11.847
First-Stage F, Non-STEM 7.870 15.099 8.840 2.884 0.492 0.000 0.033 0.174 0.371 3.011
Clustering CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ
Weight 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads
Standard errors in parentheses

The STEM row used 23.529% of the observations from the 2SLS row, and the Non-STEM row used the other 76.471%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 31: Percentage change in Relevant Wages

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1-Yr. Change 2-Yr. Change 3-Yr. Change 4-Yr. Change 5-Yr. Change 6-Yr. Change 7-Yr. Change 8-Yr. Change 9-Yr. Change 10-Yr. Change

OLS 2.5849∗ 2.1112∗∗ 1.8039∗∗ 1.6620∗∗ 1.6809∗∗ 1.5914∗ 1.5526∗ 1.4681∗ 1.6074∗∗ 1.7173∗∗

(1.0109) (0.7802) (0.6459) (0.6130) (0.6075) (0.6262) (0.6171) (0.5845) (0.5984) (0.6393)

2SLS 1.4798 4.4736 3.9071 6.1818 13.5725 20.8868 20.6469 17.5381 15.1137 20.3676
(4.5737) (3.1330) (3.1099) (5.0250) (14.0753) (33.6415) (31.7914) (22.2037) (18.0723) (31.1140)

2SLS STEM -6.8341 5.2375∗ 6.3739∗∗ 7.2805∗∗∗ 13.4750∗∗∗ 14.5189∗∗∗ 15.5789∗∗∗ 16.3991∗∗∗ 14.9479∗∗∗ 15.9682∗∗∗

(3.7781) (2.2587) (2.0275) (1.9690) (2.1222) (2.1652) (2.1320) (2.0423) (1.9451) (2.1182)

2SLS NonSTEM 8.3187 3.4740 1.0981 2.6421 5.6149 3.8840 7.0717 14.6670 19.0834 8.7188
(8.9667) (4.4242) (4.3794) (9.8271) (81.5334) (23.8056) (29.5119) (76.8673) (134.7628) (39.5854)

All Instruments -0.2995 0.5759 -0.2570 0.3760 1.4377 3.0182∗ 2.6194∗ 2.5600∗ 2.3002∗ 2.7180∗∗

(0.8982) (0.9949) (1.0158) (0.9783) (1.2071) (1.3052) (1.2032) (1.1079) (1.0672) (0.9843)

LIML -2.1699 -1.0251 -2.4140 -1.6175 0.6021 11.3513 9.2342 8.5881 6.0731 9.4969
(1.5337) (2.0050) (2.0908) (2.5527) (4.9766) (13.8391) (11.6797) (9.5832) (7.3273) (12.1031)

Observations 45,492 45,492 43,214 40,936 38,658 36,414 34,136 31,858 29,580 27,302
Boot. P Value for 2SLS 0.735 0.149 0.153 0.120 0.147 0.300 0.284 0.197 0.181 0.277
Boot. P Value for 2SLS STEM 0.096 0.052 0.009 0.006 0.000 0.000 0.000 0.000 0.000 0.000
Boot. P Value for 2SLS NonSTEM 0.259 0.336 0.760 0.661 0.902 0.779 0.681 0.746 0.810 0.712
Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Major-Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
First-Stage F 3.284 6.675 4.749 2.709 1.035 0.392 0.422 0.624 0.723 0.419
First-Stage F, STEM 10.268 24.152 34.067 44.935 34.153 32.501 31.271 28.072 27.950 24.248
First-Stage F, Non-STEM 1.831 4.042 2.205 0.623 0.016 0.145 0.161 0.062 0.030 0.114
Clustering CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ
Weight 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads
Standard errors in parentheses

The STEM row used 23.529% of the observations from the 2SLS row, and the NonSTEM row used the other 76.471%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

59



C Additional Details on the Model and Model Estimation

C.1 Comparing Student Beliefs to Rational Expectations

In our model, equations (8) and (9) constitute limitations on the ability of students to predict future wages and STEM
employment shares. They are constrained to be linear predictions, and only make use of the current STEM employment
share. An extreme alternative to these limitations would be to expand the student’s information set to include all the local
labor market characteristics a student could potentially access as predictors in their forecast, or even to assume that students
could somehow predict the future perfectly.

The main problem with each of these alternatives is that they seem highly unrealistic, particularly in our context when
the initial and most interesting decisions of the model occur while a student is still in high school. Were it not for the
evidence presented above in section 4 that these students react to local employment shares, it might have been doubted
whether even local employment shares would factor into high school decision making. As it is, we allow students access to
the key components that were shown to be relevant in section 4, namely, the local employment share and the implications of
that employment share for wages.

A second problem with including additional variables in the student’s set of information is that it quickly makes the
model intractable. For example, allowing past realized wmt terms to inform predictions about future ones would add four
continuous variables to the state space, one for each of the possible degree types m within the model. In practice, some
restriction must be made, and our restriction is to assume that students observe only SEt .

The two problems mentioned here often lead researchers to apply similar restrictions even in models where the model
specifies the path of these future values to be something different than what the students think. Buchinsky and Leslie (2010)
is an example of researcher’s responding to the first problem, that it seems unlikely that students would have perfectly rational
expectations. Instead, they provide a setup in which agents estimate a VAR model for predicting future wage distributions.
Krusell and Smith (1998) propose a solution to the second problem, the “curse of dimensionality,” by giving modeled agents
reduced form expectations and arguing that reduced form expressions of this kind can be made sufficiently accurate to
capture essentially perfect rational expectations. Our justification is closer to that of Buchinsky and Leslie (2010). However,
we intend to estimate a general equilibrium version of this model, which would allow us to check the accuracy of student
predictions and see how well the justification of Krusell and Smith (1998) could fit our case as well.

C.2 Finding the Measurement Parameters

In this section we describe how we identify the µ and λ parameters from equation (18). We start with the measures from the
NLSY97, and make the normalization that E

(
log
(
Aimg

))
= 0 and Var

(
log
(
Aimg

))
= 1 for both ability types m in grade 9.

Then, we can identify the µr terms for all measures present in grade 9 like this:

µ
r
m = E

(
Zr

img

)
(35)

For the λ r terms, we can use the three measures for STEM ability to identify each of the STEM lambda terms for the
measures present in ninth grade:

λ
r
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) (36)

Since we have more than three measures of STEM ability, this is over-identified. To deal with this, we calculate each λ r
s

parameter separately with all of the possibilities for the other two measures r′ and r′′ to include, and use the average as our
final estimate of λ r

s .
For the non-STEM ability, pick a STEM ability measure from the ninth grade Zr

isg. Then,
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) (37)

Here, the STEM ability measure Zr
isg was arbitrarily chosen, and so we will estimate λ r

n with each of the three possible Zr
is

measures and take the average. Not that this equation assumes that the covariance between STEM and non-STEM ability is
non-zero.
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Once the measurement parameters for the NLSY97 have been found, we use the SAT measurement parameters to identify
the expected latent ability and the variance of that latent ability for students in our TSP sample that took the SAT. Then, in
each case matching the relevant students from our TSP sample to a sample from the NLSY97 using weights from (19), we
back-solve the average latent abilities and the variance of those in the TSP by assuming that these two terms grow at the
same rate between grade levels for the TSP sample as they do for the NLSY97 sample. For 11th grade students, we also
need to make the additional assumption that the correlation between STEM and Non-STEM ability is the same in the TSP
as it is in the NLSY97.

With the movement of aggregate abilities described in this way, we have everything that we need to identify the measure-
ment parameters for the TAAS standardized tests even though no age-invariant measurement is present in the TSP data. For
the STEM measure in 11th grade, take the TAAS Math test as a measure r, and then the two Non-STEM TAAS measures for
that year r′ and r′′.

λ
r
s =

1
Corr

(
Aisg,Aing

)
Var
(
Aisg
)√Cov

(
Zr,Zr′

)
Cov

(
Zr,Zr′′

)
Cov

(
Zr′ ,Zr′′

) (38)

For all other cases, there are at least two TAAS measures present by grade level for each kind of ability. We follow this
procedure to identify their lambda terms: Take a TAAS measure r for ability type c, which here could be either STEM or
Non-STEM. In order to identify λ r

c , we need two other measures from the same grade level as r. If there exist two other
measures with the same type c, then we will use those and label them r′ and r′′. Otherwise, we will use the other measure of
type c as r′, and take the last measure r′′ from the other type.76 Then, use this formula:

λ
r
c =

1
Var(Aict)

√
Cov
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Zr,Zr′
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) (39)

Once we have found the lambda terms, the process for finding the µr
m terms is the same for all cases:

µ
r
c = E

(
Zr

t
)
−λ

r
c E (Aict) (40)

Table 32 provides all of the resulting estimates for the measurement parameters.
The approach above relies upon an assumption that the growth rates in expected ability and the variance of ability are

the same between a matched sample of the NLSY97 and the TSP. Given the focus of our model on how students react to
local employment conditions, one potential criticism of this approach is that it ignores how these growth rates depend upon
student reactions to aggregate movements in employment. For example, if there were a substantial Texas-wide growth in the
STEM employment share between the time that we take the NLSY97 data and the time of our TSP sample, a student reaction
to take more STEM classes may alter the ability growth rate in the TSP sample compared to the NLSY97 sample. Note this
concern is specifically about aggregate movement in employment shares across our full Texas sample, and the potential for
this to result aggregate changes to ability growth rates between grade levels. Idiosyncratic movements in local employment
shares do not carry this same level of concern, because different localities could have rising and falling ability growth while
leaving the aggregate Texas wide average unchanged.77

We hope to take further steps to address this concern, but for now have two primary responses. First, this underlines the
importance of using NLSY97 data and TSP data that are quite close to each other in time. Since we are able to do this, it
mitigates the concern that there could develop substantial differences in aggregate employment shares and then aggregate
ability growth rates in this time between the samples.

Second, this concern is only valid for changes to high school course taking before a student’s senior year. This is because
the SAT is typically taken toward the beginning of the senior year, and so our estimates for the upperclassmen γ and κ terms
are formed based on growth that occurs in the junior year.78 In order to bias our estimates, then, any changes in Texas-wide
employment shares would have to affect course-taking in the junior year or earlier. Our estimates on student course-taking

76For example, to identify the λ r
c for the TAAS Math test in ninth grade, we would use the TAAS Science test as r′ and take the third measure r′′ from

the Non-STEM measures, which include the TAAS Writing, Reading, and Social Studies exams. It is an arbitrary choice which of these Non-STEM
measures to use as r′′, and so in cases like this we calculate λ r

m for all possible choices of r′′ and take the average. By taking using measures from both
STEM and Non-STEM to identify these lambda terms, we are assuming that there is a non-zero covariance between STEM and Non-STEM ability.

77Specifically, this intuition rests upon idiosyncratic movements in local employment conditions having linear effects on the growth rate in ability.
Say, for example, that gℓ = αεℓ, where gℓ was the ability growth rate in location ℓ and εℓ represented idiosyncratic changes in local employment shares.
If E (εℓ) = 0, then the aggregate growth rate E (gℓ) will be zero as well, suggesting that the local εℓ terms do not affect the aggregate growth rate.

78We then use these estimated terms to predict human capital growth in the senior year as well, assuming that these coefficients across the student’s
“upperclassman” years in high school.
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responses in table 1 specifically referred to classes taken in the senior year, and within our model high school students are
only able to alter their course-taking in response to local employment shares in their senior year. Thus, at least through the
simplified lens of the model, there is no potential for this sort of concern to bias results. In the future, we can report more
direct tests of these restrictions from regressions like those of table 1 to test whether students react to employment conditions
in their junior year of high school or earlier. If it is the case that student course-taking reacts to employment shares in those
years as well, we can likely then take further action to directly control for bias coming from course-taking by using estimates
of how aggregate course-taking would have changed.
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Table 32: Measurement Parameters

Measure Type Estimated from λ r
m λ r

m Obs. µr
m µr

m Obs. Signal To Noise
Ratio

STN Ratio Obs.

ASVAB Paragraph Comprehension Non-STEM NLSY97 722.304 957 -197.892 957 .765 957
ASVAB Word Knowledge Non-STEM NLSY97 675.398 957 -508.309 957 .701 957
SAT Verbal Score Non-STEM NLSY97 131.616 122 328.257 140 .839 140
ASVAB Arithmetic Reasoning STEM NLSY97 760.803 958 -281.826 957 .812 957
ASVAB General Science STEM NLSY97 501.76 958 -336.72 958 .436 958
ASVAB Math. Knowledge STEM NLSY97 756.861 958 1.643 956 .851 956
ASVAB Numerical Operations STEM NLSY97 3488.942 958 16746.15 950 .376 950
PIAT Math Test STEM NLSY97 10.122 958 97.227 1,065 .561 1,065
SAT Math Score STEM NLSY97 127.152 122 298.096 140 .828 140
TAAS Reading, Grade 11 Non-STEM TSP 8.011 82,902 80.513 82,739 .614 82,739
TAAS Reading, Grade 9 Non-STEM TSP 13.486 332,595 87.906 331,051 .64 331,051
TAAS Soc. Studies, Grade 9 Non-STEM TSP 137.328 332,595 1584.894 331,572 .575 331,572
TAAS Writing, Grade 11 Non-STEM TSP 175.502 82,902 1564.504 82,626 .302 82,626
TAAS Writing, Grade 9 Non-STEM TSP 203.622 332,595 1694.212 327,642 .407 327,642
TAAS Math, Grade 11 STEM TSP 7.177 82,902 75.477 82,708 .608 82,708
TAAS Math, Grade 9 STEM TSP 7.681 334,503 83.44 331,473 .564 331,473
TAAS Science, Grade 9 STEM TSP 105.924 334,503 1643.108 330,165 .582 330,165

The NLSY97 measurement parameters were found using weights from the TSP Student data. Each of these weights used observations from at least 83,147 students.
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Table 33: Groups of Industries for the Model

Two Digit NAICS Code Industry Group Number of Student Observations

71 Non-Stem Intensive 27164
62 Non-Stem Intensive 396861
52 Non-Stem Intensive 117313
81 Non-Stem Intensive 44947
61 Non-Stem Intensive 393901
44–45 Non-Stem Intensive 212173
53 Non-Stem Intensive 33634
72 Non-Stem Intensive 118011
56 Stem-Intensive 151732
31–33 Stem-Intensive 108878
51 Stem-Intensive 48671
48–49 Stem-Intensive 39592
55 Stem-Intensive 7640
22 Stem-Intensive 10766
23 Stem-Intensive 66540
21 Stem-Intensive 30093
11 Stem-Intensive 5238
42 Stem-Intensive 74668
54 Stem-Intensive 188458

Table 34: Groups of Majors for the Model

Major Type Label for Major Group Included Two-Digit CIP codes

Non-Stem Non-Stem Degrees 01,04,05,09,10,12,13,16,19,22,23,24,30,31,38,42,43,44,45,46,47,48,49,50,51,52
Stem Computer and Bio. Sciences 11,26
Stem Engineering 14,15
Stem Math, Physical Sci., and Sci. Tech. 27,40,41
Stem Nat. Resources and Conservation 03

The variables used to sort these two-digit CIP codes into groups were constructed using information from at least 1,905,531 students.

C.3 Estimated groups of Majors and Industries

Table 33 displays the industries by two-digit NAICS code that we sort into the STEM and Non-STEM intensive groups.
These are largely as would be expected. For example, “Mining, Quarrying, and Oil and Gas Extraction” (21), Utilities
(22), Construction (23), Manufacturing (31-33), and “Professional, Scientific, and Technical Services” (54) are all in the
“STEM-Intensive” category. On the other hand, “Retail Trade” (44-45), “Educational Services” (61), “Arts, Entertainment,
and Recreation” (71), and “Accommodation and Food Services” (72) are all in the Non-STEM category. One surprising
categorization is that “Health Case and Social Assistance” was found to be in the Non-STEM category. We had expected this
to be in the STEM category, and actually used it as a motivational example for the movement of STEM majors in section 2,
which goes to show the importance of doing the full analysis to see what results come up.

Table 34 shows the groups of majors that we will form from the two-digit CIP codes. The STEM groups were chosen
by a kmeans algorithm, but largely seem to be sensible groupings of majors. We give each a label to help clarify the sort of
majors that belong to each group.79 Of these, we will use the STEM major groups “Computer and Biological Sciences" and
"Engineering" when estimating the full model.

C.4 Regression Results for Estimating the Structural Model

79A fuller description of these two digit CIP codes and the college majors that they encompass is avaliable at
www.txhighereddata.org/Interactive/CIP/.
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Table 35: Change in the Share of College-Bound High School Graduates Choosing m as their First Major in College, using
the Three Groups of College Majors for the Structural Model

(2) (4) (6) (8) (10)
2-Yr. Change 4-Yr. Change 6-Yr. Change 8-Yr. Change 10-Yr. Change

2SLS 0.5365 -0.6216 -1.0731 -1.1737 -1.2536
(0.9540) (1.1294) (1.2299) (1.0670) (1.0887)

2SLS STEM 0.5539∗ 0.3344∗ 0.2468 0.2646 0.2318
(0.2288) (0.1660) (0.1971) (0.1949) (0.2213)

2SLS NonSTEM 0.4249 -1.3374 -2.0843 -2.1386∗ -1.9477
(1.1911) (1.2559) (1.2567) (1.0774) (1.1653)

Observations 3,618 3,216 2,814 2,412 2,010
Boot. P Value for 2SLS 0.498 0.626 0.428 0.330 0.317
Boot. P Value for 2SLS STEM 0.031 0.067 0.254 0.229 0.352
Boot. P Value for 2SLS NonSTEM 0.580 0.441 0.159 0.091 0.177
Covariates Yes Yes Yes Yes Yes
Major-Time FE Yes Yes Yes Yes Yes
First-Stage F 23.918 24.743 20.005 19.011 16.743
First-Stage F, STEM 22.211 31.146 27.857 25.512 21.967
First-Stage F, Non-STEM 24.373 38.836 38.611 33.398 31.215
Clustering CZ CZ CZ CZ CZ
Weight 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads
Standard errors in parentheses

The STEM row used 66.667% of the observations from the 2SLS row, and the NonSTEM row used the other 33.333%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 36: Change in the Share of All High School Graduates Who attend College and choose m as their First Major, using
the Three Groups of College Majors for the Structural Model

(2) (4) (6) (8) (10)
2-Yr. Change 4-Yr. Change 6-Yr. Change 8-Yr. Change 10-Yr. Change

2SLS -0.2574 -0.6527 -0.5198 -0.4583 -0.5995
(0.4084) (0.5385) (0.6467) (0.5400) (0.5735)

2SLS STEM 0.2857∗∗ 0.2017∗∗ 0.1551 0.1488 0.1261
(0.0991) (0.0781) (0.0925) (0.0882) (0.0961)

2SLS NonSTEM -0.2755 -0.8627 -0.6203 -0.3096 -0.2917
(0.6112) (0.6637) (0.7722) (0.6059) (0.7340)

Observations 3,618 3,216 2,814 2,412 2,010
Boot. P Value for 2SLS 0.569 0.304 0.459 0.438 0.273
Boot. P Value for 2SLS STEM 0.013 0.031 0.160 0.148 0.244
Boot. P Value for 2SLS NonSTEM 0.703 0.334 0.522 0.659 0.623
Covariates Yes Yes Yes Yes Yes
Major-Time FE Yes Yes Yes Yes Yes
First-Stage F 23.921 24.767 20.011 19.012 16.747
First-Stage F, STEM 22.744 33.380 28.367 25.986 22.801
First-Stage F, Non-STEM 25.042 44.723 40.787 34.494 34.113
Clustering CZ CZ CZ CZ CZ
Weight 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads
Standard errors in parentheses

The STEM row used 66.667% of the observations from the 2SLS row, and the NonSTEM row used the other 33.333%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 37: Change in the Share of College Graduates Choosing m as their Final Major in College, with labor market conditions
measured in the senior year of high school, using the Three Groups of College Majors for the Structural Model

(2) (4) (6) (8) (10)
2-Yr. Change 4-Yr. Change 6-Yr. Change 8-Yr. Change 10-Yr. Change

2SLS 0.2831 0.2545 0.2502 0.2277 0.2397
(0.3328) (0.2565) (0.2850) (0.2566) (0.2821)

2SLS STEM 0.5494 0.3282∗ 0.2538 0.3157∗ 0.3270
(0.3819) (0.1609) (0.1796) (0.1591) (0.1925)

2SLS NonSTEM 0.0940 0.0970 0.1023 0.0745 0.0183
(0.3532) (0.2365) (0.2468) (0.2384) (0.2450)

Observations 2,808 2,406 2,007 1,605 1,203
Boot. P Value for 2SLS 0.364 0.353 0.377 0.406 0.548
Boot. P Value for 2SLS STEM 0.165 0.069 0.196 0.069 0.136
Boot. P Value for 2SLS NonSTEM 0.457 0.718 0.665 0.843 0.765
Covariates Yes Yes Yes Yes Yes
Major-Time FE Yes Yes Yes Yes Yes
First-Stage F 14.725 17.688 17.297 20.599 16.100
First-Stage F, STEM 14.801 23.506 25.592 29.519 22.599
First-Stage F, Non-STEM 16.791 33.742 41.547 37.438 30.900
Clustering CZ CZ CZ CZ CZ
Weight 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads
Standard errors in parentheses

The STEM row used 66.667% of the observations from the 2SLS row, and the Non-STEM row used the other 33.333%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 38: Change in the Share of College Graduates Choosing m as their Final Major in College, with labor market conditions
measured at the year of college graduation, using the Three Groups of College Majors for the Structural Model

(2) (4) (6) (8) (10)
2-Yr. Change 4-Yr. Change 6-Yr. Change 8-Yr. Change 10-Yr. Change

2SLS -0.0393 1.0759∗ 0.9246∗ 0.2695 0.2950
(0.3183) (0.4742) (0.4339) (0.3424) (0.5784)

2SLS STEM 0.0547 0.9355∗∗ 0.9117∗∗ 0.4365 0.0796
(0.2781) (0.2987) (0.3488) (0.2479) (0.3464)

2SLS NonSTEM -0.3321 0.4888 0.4597 -0.0727 -0.3491
(0.3789) (0.5436) (0.4184) (0.3145) (0.3825)

(0.2151) (0.2315) (0.1918) (0.1957) (0.2017)

Observations 2,613 2,211 1,809 1,407 1,005
Boot. P Value for 2SLS 0.952 0.046 0.050 0.492 0.985
Boot. P Value for 2SLS STEM 0.830 0.004 0.021 0.101 0.850
Boot. P Value for 2SLS NonSTEM 0.430 0.968 0.284 0.758 0.123
Covariates Yes Yes Yes Yes Yes
Major-Time FE Yes Yes Yes Yes Yes
First-Stage F 29.208 25.901 21.851 21.345 11.287
First-Stage F, STEM 30.111 25.887 25.208 25.343 13.246
First-Stage F, Non-STEM 30.986 35.493 42.072 31.955 17.967
Clustering CZ CZ CZ CZ CZ
Weight 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads 1998 HS Grads
Standard errors in parentheses

The STEM row used 66.667% of the observations from the 2SLS row, and the Non-STEM row used the other 33.333%.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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C.5 Additional Tables Displaying the Fit of the Model

Table 39: Fit of High School Moments

Lag: 2-Year 4-Year 6-Year 8-Year 10-Year
Model Data Model Data Model Data Model Data Model Data

HS Classes -0.058 -0.045 0.224 0.564 0.383 1.053 0.406 0.947 0.568 0.955
Credit, STEM Classes -0.815 -0.201 -0.268 -0.563 -0.065 -0.868 -0.150 -0.704 -0.313 -0.669
Credit, Non-STEM Classes 0.218 0.142 0.013 0.218 -0.106 0.270 0.131 0.211 0.150 0.193

Table 40: Fit of Non-STEM College Moments

Lag: 2-Year 4-Year 6-Year 8-Year 10-Year
Model Data Model Data Model Data Model Data Model Data

First Major Choice, Intensive 0.587 0.425 0.514 -1.337 0.546 -2.084 0.532 -2.139 0.571 -1.948
First Major Choice, Extensive 0.215 -0.275 0.145 -0.863 0.080 -0.620 0.082 -0.310 0.164 -0.292
Graduation Major, any year -0.071 0.094 0.211 0.097 0.361 0.102 0.400 0.075 0.462 0.018
Graduation Major, by year 0.025 -0.332 0.285 0.489 0.368 0.460 0.387 -0.073 0.446 -0.349

Table 41: Fit of STEM College Moments

Lag: 2-Year 4-Year 6-Year 8-Year 10-Year
Model Data Model Data Model Data Model Data Model Data

First Major Choice, Intensive 0.423 0.554 0.370 0.334 0.393 0.247 0.383 0.265 0.411 0.232
First Major Choice, Extensive 0.152 0.286 0.138 0.202 0.155 0.155 0.150 0.149 0.153 0.126
Graduation Major, any year -0.049 0.549 0.120 0.328 0.211 0.254 0.231 0.316 0.270 0.327
Graduation Major, by year 0.013 0.055 0.164 0.935 0.208 0.912 0.217 0.436 0.255 0.080
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C.6 Additional Figures for the Counterfactuals

Figure 11: Additional Figures Showing the Results of Removing the Option of a Senior-year STEM-Intensive track, just for
Students who Chose the STEM-Intensive Senior Year track in the baseline case.

(a) Average Period 5 Earnings (b) Average Period 5 Earnings, Lowest Ter-
cile of Initial STEM Ability

(c) Average Period 5 Earnings, Highest Ter-
cile of Initial STEM Ability

(d) Average Present Value of Lifetime Earn-
ings

(e) Average Present Value of Lifetime Earn-
ings, Lowest Tercile of Initial STEM Ability

(f) Average Present Value of Lifetime Earn-
ings, Highest Tercile of Initial STEM Abil-
ity
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Figure 12: Additional Figures Showing the Results of Removing the Option of a Senior-year STEM-Intensive track for All
Students, broken down by Tercile of Initial STEM Ability

(a) Average Period 5 Earnings, Lowest Ter-
cile of Initial STEM Ability

(b) Average Period 5 Earnings, Second Ter-
cile of Initial STEM Ability

(c) Average Period 5 Earnings, Highest Ter-
cile of Initial STEM Ability

(d) Average Present Value of Lifetime Earn-
ings, Lowest Tercile of Initial STEM Ability

(e) Average Present Value of Lifetime Earn-
ings, Second Tercile of Initial STEM Ability

(f) Average Present Value of Lifetime Earn-
ings, Highest Tercile of Initial STEM Abil-
ity
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